Published online by Cambridge University Press: 06 July 2010
Although more detailed and formal than the presentation in §1.1, this appendix does not claim to provide a complete, rigorous presentation of axiomatic set theory (there are several entire books devoted to the subject, some of them listed in the references). Although axioms for set theory will be stated in detail, some definitions, such as linear ordering and well-ordering, will be assumed to be known (from Chapter 1).
Mathematical Logic
Around 300 b.c., Euclid's geometry presented “a strictly logical deduction of theorems from a set of definitions, postulates and axioms” (Struik, 1948, p. 59). Euclid went a long way, although not all the way, to the modern ideal of the axiomatic method, where, when the proof of a theorem is written out in detail, it can be checked mechanically and precisely to ascertain that it is (or is not) a proof. From a modern point of view, perhaps the least strictly logical part of Euclid's system is his definitions—for example, “a point is that which has no extension,” “a line is a length, without width …” As was noted in §1.1, a truly precise mathematical system, or ‘formal system’, begins with some basic undefined terms. Then other terms can be defined from the basic ones.
The most widely accepted formal systems, giving a foundation for modern mathematics, are based on propositional calculus and first-order predicate logic. Only a very brief introduction to these topics will be given here. For more details see, for example, Kleene (1967).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.