Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T17:24:22.983Z Has data issue: false hasContentIssue false

11 - Convergence of Laws on Separable Metric Spaces

Published online by Cambridge University Press:  06 July 2010

R. M. Dudley
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

So far we have dealt with convergence of laws mainly on finite-dimensional Euclidean spaces ℝk, for the central limit theorem (§§9.3–9.5). Now we'll treat converging laws on more general, possibly infinite-dimensional spaces. Here are some cases where such spaces and laws can be helpful.

Let x(t, Ω) be the position of a randomly moving particle at time t, where Ω ∈ Ω, for some probability space (Ω, , P). For each Ω, we then have a continuous function t↦ x(t, Ω). Suppose we consider times t with 0 ≤ t ≤ 1 and that x is real-valued (the particle is moving along a line, or we just consider one coordinate of its position). Then x(·, Ω) belongs to the space C[0, 1] of continuous real-valued functions on [0, 1]. The space C[0, 1] has a usual norm, the supremum norm |f| ≔, sup|f(t)|: 0 < t < 1. Then C[0, 1] is a complete separable metric space for the metric d defined as usual by d(f, g) ≔, |f – g|. It may be useful to approximate the process x, for example, by a process yn such that for each Ω and each k = 1, …, n, yn (·, Ω) is linear on the interval [(k – 1)/n, k/n]. Thus it may help to define yn converging to x in law (or in probability or a.s.) in C[0, 1].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, Alejandro (1982). Invariance principles in probability for triangular arrays of B-valued random vectors and some applications.Ann. Probability 10: 346–373CrossRefGoogle Scholar
Aganbegyan, A. G., Aleksandrov, A. D., Faddeev, D. K., Gavurin, M. K., Kuteladze, S. S., Makarov, V. L., Reshetnyak, Yu G., Romanovskii, I. V., Rubinshtein, G. Sh., and Sobolev, S. L. (1987). Leonid Vital'evich Kantorovich.Russian Math. Surveys 42, no. 2: 225–232. Transl. fromUspekhi Mat. Nauk 42, no. 2: 177–182CrossRefGoogle Scholar
Akilov, G. P., Vulikh, B. Z., Gavurin, M. K., Zalgaller, V. A., Natanson, I. P., Pinsker, A. G., and Faddeev, D. K. (1962). Leonid Vital'evich Kantorovich (In honor of his fiftieth birthday).Russian Math. Surveys 17, no. 4: 115–128. Transl. fromUspekhi Mat. Nauk 17, no. 4: 201–215CrossRefGoogle Scholar
Alexandroff, Alexander Danilovich [Aleksandrov, A. D.] (1940, 1941, 1943). Additive set-functions in abstract spaces.Mat. Sbornik (N.S.) 8: 307–348; 9: 563–628; 13: 169–238 (in English)Google Scholar
Alexandroff [Aleksandrov], P. S., Efimov, N. V., Zalgaller, V. A., and Pogorelov, A. V. (1973). Aleksandr Danilovich Aleksandrov (on his sixtieth birthday).Russian Math. Surveys 28, no. 2: 225–230. Transl. fromUspekhi Mat. Nauk 28, no. 2: 249–253CrossRefGoogle Scholar
Bray, H. E. (1918–1919). Elementary properties of the Stieltjes integral.Ann. Math. (Ser. 2) 20: 177–186CrossRefGoogle Scholar
*Cantelli, Francesco Paolo (1933). Sulla determinazione empirica della leggi di probabilità. Giorn. Ist. Ital. Attuari, 4: 421–424Google Scholar
Dall'Aglio, Giorgio (1956). Sugli estremi dei momenti delle funzioni di ripartizione doppia.Ann. Scuola Norm. Sup. Pisa (Ser. 3) 10: 35–74Google Scholar
Dudley, R. M. (1966). Convergence of Baire measures.Studia Math. 27: 251–268CrossRefGoogle Scholar
Dudley, R. M. (1968). Distances of probability measures and random variables.Ann. Math. Statist. 39: 1563–1572CrossRefGoogle Scholar
Dudley, R. M. (1976). Probabilities and Metrics. Lecture Notes Ser. No. 45, Matematisk Institut, Aarhus Universitet
Dudley, R. M. (1985). An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. Probability in Banach Spaces V (Proc. Conf. Medford, 1984). Ed. A. Beck et al. Lecture Notes in Math. (Springer) 1153: 141–178CrossRef
Dyson, Freeman J. (1953). Fourier transforms of distribution functions.Canad. J. Math. 5: 554–558CrossRefGoogle Scholar
Fernique, Xavier (1981). Sur le théorème de Kantorovitch-Rubinstein dans les espaces polonais.Séminaire de Probabilités XV. Lecture Notes in Math. (Springer) 850: 6–10CrossRefGoogle Scholar
Fortet, Robert, and Mourier, Edith (1953). Convergence de la répartition empirique vers la répartition théorique.Ann. Sci. Ecole Norm. Sup. 70: 266–285Google Scholar
*Glivenko, Valery Ivanovich (1933). Sulla determinazione empirica della leggi di probabilità. Giorn. Ist. Ital. Attuari 4: 92–99Google Scholar
Hall, Marshall, Jr. (1958). A survey of combinatorial analysis. In Some Aspects of Analysis and Probability, pp. 35–104. Wiley, New York
Hall, Philip (1935). On representatives of subsets.J. London Math. Soc. 10: 26–30CrossRefGoogle Scholar
Halmos, Paul (1946). The theory of unbiased estimation.Ann. Math. Statist. 17: 34–43CrossRefGoogle Scholar
Halmos, Paul(1950). Measure Theory. Van Nostrand, Princeton
Halmos, Paul, and Neumann, J. (1942). Operator methods in classical mechanics, II.Ann. Math. 43: 332–350CrossRefGoogle Scholar
*Helly, E. (1911–1912). Über lineare Funktionaloperatoren.Sitzungsber. Nat. Kais. Akad. Wiss. (Wien) Math. Nat. Kl. IIa 121: 265–297Google Scholar
Hildebrandt, T. H. (1966). Linear continuous functionals on the space (BV) with weak topologies.Proc. Amer. Math. Soc. 17: 658–664Google Scholar
Hoeffding, Wassily (1948). A class of statistics with asymptotically normal distribution.Ann. Math. Statist. 19: 293–325CrossRefGoogle Scholar
*Hölder, Otto Ludwig (1882). Beiträge zur Potentialtheorie. Dissertation, Tübingen
Ince, Edward Lindsay (1926). Ordinary Differential Equations. Repr. Dover, New York, 1956
Istoriia otechestvennoi matematiki (in Russian) (1970). Vol. 4, bk. 2. Acad. Sci. USSR and Ukrain. SSR, Kiev
Jahrbuch über die Fortschritte der Mathematik, 59 (1933)
Kantorovich, Leonid Vasilevich (1940). A new method of solving some classes of extremal problems. Comptes Rendus (Doklady)Acad. Sci. USSR 28: 211–214
Kantorovich, Leonid Vasilevich, and G. Sh. Rubinshtein (1958). On a space of completely additive functions. Vestnik Leningrad Univ. 13, no. 7, Ser. Mat. Astron. Phys. 2: 52–59 (in Russian)
*König, Dénes (1931). Graphs and matrices. (In Hungarian.) Mat-Fiz. Lapok 38: 116–119
*König, Dénes(1950). Theorie der endlichen und unendlichen Graphen. Chelsea, New York
Le Cam, Lucien (1957). Convergence in distribution of stochastic processes. Univ. of Calif. Publs. in Statistics 2, no. 11: 207–236 (Univ. of Calif. Press, Berkeley)
Liouville, Joseph (1837). Second Mémoire: Sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre contenant un parametre variable.J. de Math. Pures et Appliquées (Ser. 1) 2: 16–35Google Scholar
Liouville, Joseph(1838). Premier mémoire. Sur la théorie des équations différentielles linéaires et sur le développement des fonctions en séries.J. de Math. Pures et Appliquées (Ser. 1) 3: 561–614Google Scholar
Lipschitz, Rudolf Otto Sigismund (1876). Sur la possibilité d'intégrer complètement un système donné d'équations différentielles.Bull. Sci. Math. (Ser. 1) 10: 149–159Google Scholar
Mises, R. (1947). On the asymptotic distribution of differentiable statistical functionals.Ann. Math. Statist. 18: 309–348CrossRefGoogle Scholar
*Monge, Gaspard (1781). Mémoire sur la théorie des déblais et des remblais. InHistoire de l'Académie des Sciences de Paris, avec les Mémoires de mathématique et de physique pour la mêeme année, pp. 666–704Google Scholar
New York Times [unsigned] (1986). Leonid V. Kantorovich dies; Won Nobel Economics Prize. April 11, 1986, p. D18
Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York
Picard, Émile (1893). Sur l'application des méthodes d'approximation successives a l'étude de certaines équations différentielles ordinaires.J. de Math. Pures et Appliquées (Ser. 4) 9: 217–271Google Scholar
Preiss, David (1973). Metric spaces in which Prohorov's theorem is not valid.Z. Wahrscheinlichkeitsth. verw. Geb. 27: 109–116CrossRefGoogle Scholar
Prohorov, Yurii Vasilevich (1956). Convergence of random processes and limit theorems in probability theory.Theor. Probability Appls. 1: 157–214CrossRefGoogle Scholar
Rachev, Svetlozar T. (1984). The Monge-Kantorovich mass transference problem and its stochastic applications.Theor. Probability Appls. 29: 647–676CrossRefGoogle Scholar
Ranga Rao, R. (1962). Relations between weak and uniform convergence of measures with applications.Ann. Math. Statist. 33: 659–680Google Scholar
Rokhlin, Vladimir Abramovich (1949). On the fundamental ideas of measure theory.Mat. Sbornik 25: 107–150. (In Russian); Amer. Math. Soc. Translations 71 (1952): 1–54Google Scholar
Rubinshtein, Gennadii Shlemovich (1970). Duality in mathematical programming and certain problems in convex analysis.Russian Mathematical Surveys 25: no. 5: 171–201CrossRefGoogle Scholar
*Salvemini, T. (1943). Sull calcolo degli indici di concordanza tra due caratteri quantitativi. In Atti della VI Riunione della Soc. Ital. di Statistica. Rome
Scarf, Herbert E. (1975). The 1975 Nobel Prize in Economics: Resource allocation.Science 190:649, 710, 712CrossRefGoogle Scholar
Schay, Geza, (1974). Nearest random variables with given distributions.Ann. Probability 2: 163–166CrossRefGoogle Scholar
Sherbert, Donald S. (1964). The structure of ideals and point derivations in Banach algebras of Lipschitz functions.Trans. Amer. Math. Soc. 111: 240–272CrossRefGoogle Scholar
Shortt, Rae Michael (1984). Universally measurable spaces: An invariance theorem and diverse characterizations.Fund. Math. 121: 169–176CrossRefGoogle Scholar
Skorohod, Anatolii Vladimirovich (1956). Limit theorems for stochastic processes.Theor. Probability Appls. 1: 261–290CrossRefGoogle Scholar
Strassen, V. (1965). The existence of probability measures with given marginals.Ann. Math. Statist. 36: 423–439CrossRefGoogle Scholar
*Szpilrajn, E. (1937). On absolutely measurable sets and functions (in Polish).C. R. Soc. Sci. Lett. Varsovie CI. III 30:39–68Google Scholar
Szulga, Alicja (1978). On the Wasserstein metric.Trans. Eighth Prague Conf. Information Theory, Statistical Decision Functions Random Processes, vol. B, pp. 267–273. Reidel, DordrechtGoogle Scholar
Szulga, Alicja(1982). On minimal metrics in the space of random variables.Theory Probability Appls. 27: 424–430CrossRefGoogle Scholar
Varadarajan, Veeravalli S. (1958). On the convergence of sample probability distributions.Sankhyā, 19: 23–26Google Scholar
Vershik, A. M. (1970). Some remarks on infinite-dimensional linear programming problems.Russian Mathematical Surveys 25, no. 5: 117–124CrossRefGoogle Scholar
Vulikh, B. Z., , M. K. Gavurin, Kolmogorov, A. N., , Yu. V. Linnik, Makarov, V. L., Mityagin, B. S., Pinsker, A. G., Rubinshtein, G. S., and , D. K. Faddev (1972). Leonid Vitalevich Kantorovich (On his 60th birthday).Russian Math. Surveys 27, no. 3: 193–201. Transl. fromUspekhi Mat. Nauk 27, no. 3: 221–227CrossRefGoogle Scholar
Wichura, M. J. (1970). On the construction of almost uniformly convergent random variables with given weakly convergent image laws.Ann. Math. Statist. 41: 284–291CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×