Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T17:14:28.568Z Has data issue: false hasContentIssue false

6 - Convex Sets and Duality of Normed Spaces

Published online by Cambridge University Press:  06 July 2010

R. M. Dudley
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Functional analysis is concerned with infinite-dimensional linear spaces, such as Banach spaces and Hilbert spaces, which most often consist of functions or equivalence classes of functions. Each Banach space X has a dual space X′ defined as the set of all continuous linear functions from X into the field ℝ or ℂ.

One of the main examples of duality is for Lp spaces. Let (X, S, μ) be a measure space. Let 1 < p < ∞ and 1/p + 1/q = 1. Then it turns out that Lp and Lq are dual to each other via the linear functional f ↦ ∫ f g d μ for f in p and g in q. For p = q = 2, L2 is a Hilbert space, where it was shown previously that any continuous linear form on a Hilbert space H is given by inner product with a fixed element of H (Theorem 5.5.1).

Other than linear subspaces, some of the most natural and frequently applied subsets of a vector space S are the convex subsets C, such that for any x and y in C, and 0 < t < 1, we have tx + (1 – t)y ∈ C. These sets are treated in §§6.2 and 6.6. A function for which the region above its graph is convex is called a convex function. §6.3 deals with convex functions. Convex sets and functions are among the main subjects of modern real analysis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banach, Stefan (1929). Sur les fonctionelles linéaires I, II.Studia Math. 1: 211–216, 223–239CrossRefGoogle Scholar
Banach, Stefan(1931). Über metrische Gruppen.Studia Math. 3: 101–113CrossRefGoogle Scholar
Banach, Stefan(1932). Théorie des Opérations Linéaires. Monografje Matematyczne I, Warsaw
Banach, Stefanand Steinhaus, Hugo (1927). Sur le principe de la condensation de singularités.Fund. Math. 9: 50–61CrossRefGoogle Scholar
Bonnesen, Tommy, and Werner Fenchel (1934). Theorie der konvexen Körper. Springer, Berlin. Repub. Chelsea, New York, 1948CrossRef
*Brunn, Hermann (1887). Über Ovale and Eiflächen. Inauguraldissertation, Univ. München
*Brunn, Hermann(1889). Über Kurven ohne Wendepunkte. Habilitationsschrift, Univ. München
*Brunn, Hermann (1910). Zur Theorie der Eigebiete.Arch. Math. Phys. (Ser. 3) 17: 289–300Google Scholar
Dieudonné, Jean (1941). Sur le théorème de Hahn-Banach.Rev. Sci. 79: 642–643Google Scholar
Dieudonné, Jean(1943). Sur la séparation des ensembles convexes dans un espace de Banach.Rev. Sci. 81: 277–278Google Scholar
Dunford, Nelson (1981). [Response].Amer. Math. Soc. Notices 28: 509–510Google Scholar
Dunford, Nelsonand Jacob T. Schwartz, with the assistance of William G. Badé and Robert G. Bartle (1958). Linear Operators: Part I, General Theory. Interscience, New York
Eidelheit, Maks (1936). Zur Theorie der konvexen Mengen in linearen normierten Räumen.Studia Math. 6: 104–111CrossRefGoogle Scholar
Hadwiger, H., and Ohmann, D. (1956). Brunn-Minkowskischer Satz und Isoperimetrie.Math. Zeitschr. 66: 1–8CrossRefGoogle Scholar
Hahn, Hans (1922). Über Folgen linearer Operationen.Monatsh. für Math. und Physik 32: 3–88CrossRefGoogle Scholar
Hahn, Hans (1927). Über lineare Gleichungssyteme in linearen Räumen.J. für die reine und angew. Math. 157: 214–229Google Scholar
Hardy, Godfrey Harold, John Edensor Littlewood, and George Polya (1934). Inequalities. Cambridge University Press 2d ed., 1952, repr. 1967
Hildebrandt, T. H. (1923). On uniform limitedness of sets of functional operations.Bull. Amer. Math. Soc. 29: 309–315CrossRefGoogle Scholar
Hörmander, Lars (1964). Linear partial differential operators. Springer, Berlin
Jensen, Johan Ludvig William Valdemar (1906). Sur les fonctions convexes et les inégalites entre les valeurs moyennes.Acta Math. 30: 175–193CrossRefGoogle Scholar
Kelley, John L., Isaac Namioka, and eight co-authors (1963). Linear Topological Spaces. Van Nostrand, Princeton. Repr. Springer, New York (1976)
Kirszbraun, M. D. (1934). Über die zusammenziehenden und Lipschitzschen Transformationen.Fund. Math. 22: 77–108CrossRefGoogle Scholar
Lipschitz, R. O. S. (1864). Recherches sur le développement en séries trigonométriques des fonctions arbitraires et principalement de celles qui, dans un intervalle fini, admettent une infinité de maxima et de minima (in Latin).J. reine angew. Math. 63: 296–308; French transl. inActa Math. 36 (1913): 281–295CrossRefGoogle Scholar
McShane, Edward J. (1934). Extension of range of functions.Bull. Amer. Math. Soc. 40: 837–842CrossRefGoogle Scholar
Minkowski, Hermann (1897). Allgemeine Lehrsätze über die konvexen Polyeder. Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 1897: 198–219; Gesammelte Abhandlungen, 2 (Leipzig and Berlin, 1911, repr. Chelsea, New York, 1967), pp. 103–121
Minkowski, Hermann(1901). Sur les surfaces convexes fermées. C. R. Acad. Sci. Paris 132: 21–24; Gesammelte Abhandlungen, 2, pp. 128–130
Minkowski, Hermann(1910). Geometrie der Zahlen. Teubner; Leipzig; repr. Chelsea, New York, 1953
Minkowski, Hermann (1911, posth.). Theorie der konvexen Körper, insbesondere Begründung des Oberflächenbegriffs.Gesammelte Abhandlungen, 2, pp. 131–229Google Scholar
Minty, George J. (1970). On the extension of Lipschitz, Lipschitz-Hölder continuous, and monotone functions.Bull. Amer. Math. Soc. 76: 334–339CrossRefGoogle Scholar
Riesz, F. (1910). Untersuchungen über Systeme integrierbarer Funktionen.Math. Annalen 69: 449–497CrossRefGoogle Scholar
Roberts, Arthur Wayne, and Dale E. Varberg (1973). Convex Functions. Academic Press, New York
Rockafellar, R. Tyrrell (1970). Convex Analysis. Princeton University Press
Schauder, Juliusz (1930). Über die Umkehrung linearer, stetiger Funktionaloperationen.Studia Math. 2: 1–6CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×