Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T17:26:17.699Z Has data issue: false hasContentIssue false

2 - General Topology

Published online by Cambridge University Press:  06 July 2010

R. M. Dudley
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

General topology has to do with, among other things, notions of convergence. Given a sequence xn of points in a set X, convergence of xn to a point x can be defined in different ways. One of the main ways is by a metric, or distance d, which is nonnegative and real-valued, with xn → x meaning d(xn, x) → 0. The usual metric for real numbers is d(x, y) = ∣x - y∣. For the usual convergence of real numbers, a function f is called continuous if whenever xn → x in its domain, we have f(xn) → f(x).

On the other hand, some interesting kinds of convergence are not defined by metrics: if we define convergence of a sequence of functions fn “pointwise,” so that fn → f means fn(x) → f(x) for all x, it turns out that (for a large enough class of functions defined on an uncountable set) there may be no metric e such that fn→ f is equivalent to e(fn, f) → 0.

Given a sense of convergence, we can call a set F closed if whenever xi ∈ F for all i and xi → x we have x ∈ F also. Any closed interval [a, b] ≔ x: a ≤ x ≤ b is an example of a closed set. The properties of closed sets F and their complements U ≔ X∖F, which are called open sets, turn out to provide the best and most accepted way of extending the notions of convergence, continuity, and so forth to nonmetric situations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, Niels Henrik (1826). Untersuchungen über die Reihe J. reine angew. Math. 1: 311–339. Also in Oeuvres complètes, ed. L. Sylow and S. Lie. Grɸndahl, Kristiania [Oslo], 1881, I, pp. 219–250CrossRef
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich] (1924). Sur les ensembles de la première classe et les espaces abstraits.Comptes Rendus Acad. Sci. Paris 178: 185–187Google Scholar
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich](1926). Über stetige Abbildungen kompakter Räume.Math. Annalen 96: 555–571CrossRefGoogle Scholar
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich](1950). Pavel Samuilovich Urysohn.Uspekhi Mat. Nauk 5, no. 1: 196–202Google Scholar
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich] et al. (1967). Andrei Nikolaevich Tychonov (on his sixtieth birthday): On the works of A. N. Tychonov in. … Uspekhi Mat. Nauk 22, no. 2: 133–188 (in Russian); transl. in Russian Math. Surveys 22, no. 2: 109–161
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich] and V. V. Fedorchuk, with the assistance of V. I. Zaitsev (1978). The main aspects in the development of set-theoretical topology. Russian Math. Surveys 33, no. 3: 1–53. Transl. from Uspekhi Mat. Nauk 33, no. 3 (201): 3–48 (in Russian)
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich] and Heinz Hopf (1935). Topologie, 1. Band. Springer, Berlin; repr. Chelsea, New York, 1965
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich], A. Samarskii, and A. Sveshnikov (1956). Andrei Nikolaevich Tychonov (on his fiftieth birthday). Uspekhi Mat. Nauk 11, no. 6: 235–245 (in Russian)
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich] and Urysohn, Paul (1923). Une condition nécessaire et suffisante pour qu'une classe () soit une classe ().C. R. Acad. Sci Paris 177: 1274–1276Google Scholar
Alexandroff, Paul [Aleksandrov, Pavel Sergeevich andAlexandroff, Paul [Aleksandrov, Pavel Sergeevich (1924). Theorie der topologischen Räume.Math. Annalen. 92: 258–266CrossRefGoogle Scholar
Arboleda, L. C. (1979). Les débuts de 1'école topologique soviétique: Notes sur les lettres de Paul S. Alexandroff et Paul S. Urysohn à Maurice Fréchet.Arch. Hist. Exact Sci. 20: 73–89CrossRefGoogle Scholar
Arkhangelskii, A. V., A. N. Kolmogorov, A. A. Maltsev, and O. A. Oleinik (1976). Pavel Sergeevich Aleksandrov (On his eightieth birthday). Uspekhi Mat. Nauk 31, no. 5: 3–15 (in Russian); transl. in Russian Math. Surveys 31, no. 5: 1–13
*Arzelà, Cesare (1882–1883). Un'osservazione intorno alle serie di funzioni.Rend. dell' Acad. R. delle Sci. dell'Istituto di Bologna, pp. 142–159Google Scholar
**Arzelà, Cesare (1889). Funzioni di linee.Atti della R. Accad. dei Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (Ser. 4) 5: 342–348Google Scholar
**Arzelà, Cesare (1895). Sulle funzioni di linee.Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat. (Ser. 5) 5: 55–74Google Scholar
*Ascoli, G. (1883–1884). Le curve limiti di una varietà data di curve.Atti della R. Accad. dei Lincei, Memorie della Cl. Sci. Fis. Mat. Nat. (Ser. 3) 18: 521–586Google Scholar
Baire, René (1899). Sur les fonctions de variables réelles (Thèse).Annali di Matematica Pura ed Applic. (Ser. 3) 3: 1–123CrossRefGoogle Scholar
Baire, René (1906). Sur la représentation des fonctions continues.Acta Math. 30: 1–48CrossRefGoogle Scholar
Bartle, R. G. (1964). The Elements of Real Analysis. Wiley, New York
Biermann, Kurt-R. (1976). Weierstrass, Karl Theodor Wilhelm. Dictionary of Scientific Biography 14: 219–224. Scribner's, New York
*Bolzano, B. P. J. N. (1818). Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege.Abh. Gesell. Wiss. Prague (Ser. 3) 5: 1–60Google Scholar
Borel, Émile (1895). Sur quelques points de la théorie des fonctions.Ann. Scient. Ecole Normale Sup. (Ser. 3) 12: 9–55CrossRefGoogle Scholar
Borsuk, Karol (1934). Über Isomorphie der Funktionalräume.Bull. Acad Polon. Sci. Lett. Classe Sci. Sér. A Math. 1933: 1–10Google Scholar
Bourbaki, Nicolas [pseud.] (1940, 1948, 1953, 1961, 1971). Topologie Générale, Chap. 9. Utilisation des nombres réels en topologie générale. Hermann, Paris. English transl. Elements of Mathematics. General Topology, Part 2. Hermann, Paris; Addison-Wesley, Reading, Mass., 1966
Cantor, Georg (1872). Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen.Math. Annalen 5: 123–132CrossRefGoogle Scholar
Cantor, Georg (1879–1883). Ueber unendliche, lineare Punktmannichfaltigkeiten.Math. Annalen 15: 1–7; 17: 355–358; 20: 113–121; 21: 51–58CrossRefGoogle Scholar
Caratheodory, Constantin (1913). Über die Begrenzung einfach zusammenhängender Gebiete.Math. Annalen 73: 323–370CrossRefGoogle Scholar
Caratheodory, Constantin (1918). Vorlesungen über reelle Funktionen. Teubner, Leipzig and Berlin. 2d ed., 1927
Cartan, Henri (1937). Théorie des filtres: Filtres et ultrafiltres.C. R. Acad. Sci. Paris 205: 595–598, 777–779Google Scholar
Cauchy, Augustin-Louis (1821). Cours d'analyse de l'école Royale Polytechnique, Paris
Cauchy, Augustin-Louis (1823). Résumés des leÇadons données à l'école Royale Polytechnique sur le calcul infinitésimal. Debure, Paris; also in Oeuvres Complètes (Ser. 2), IV, pp. 5–261, Gauthier-Villars, Paris, 1889
*Cauchy, Augustin-Louis (1833). Résumés analytiques. Imprimerie Royale, Turin
Cauchy, Augustin-Louis (1853). Note sur les séries convergentes dons les divers termes sont des functions continues d'une variable réelle ou imaginaire, entre des limites données. Comptes Rendus Acad. Sci. Paris 36: 454–459. Also in Oeuvres Complètes (Ser. 1) Ⅻ, pp. 30–36. Gauthier-Villars, Paris, 1900
Čech, Eduard (1936). Point Sets. In Czech, Bodové Množiny. 2d ed. 1966, Czech. Acad. Sci., Prague; *In English, transl. by AleŠ Pultr, Academic Press, New York, 1969
Čech, Eduard (1937). On bicompact spaces.Ann. Math. (Ser. 2) 38: 823–844CrossRefGoogle Scholar
Čech, Eduard (1959). Topological Spaces. In Czech, *Topologické Prostory. Rev. English Ed. (1966), Eds. Z. FrolÍk and M. Katĕtov; Czech. Acad. Sci., Prague; Wiley, London
Čech, Eduard (1968). Topological Papers of Eduard Čech. Academia (Czech. Acad. Sci), Prague
Chernoff, Paul R. (1992). A simple proof of Tychonoff's theorem via nets.Amer. Math. Monthly 99: 932–934CrossRefGoogle Scholar
Chittenden, E. W. (1927). On the metrization problem and related problems in the theory of abstract sets.Bull. Amer. Math. Soc. 33: 13–34CrossRefGoogle Scholar
*Dini, Ulisse (1878). Fondamenti per la teorica delle funzioni di variabili reali. Nistri, Pisa
*Dini, Ulisse (1953–1959>, posth.) Opere. 5 vols. Ediz. Cremonese, Rome
Dugundji, James (1951). An extension of Tietze's theorem.Pacific J. Math. 1: 352–367CrossRefGoogle Scholar
Dugundji, James (1966). Topology. Allyn & Bacon, Boston
Dunford, Nelson, and Jacob T. Schwartz, with the assistance of William G. Badé and Robert G. Bartle (1958). Linear Operators, Part I: General Theory. Interscience, New York
Eichhorn, Eugen (1992). Felix Hausdorff—Paul Mongré. Some aspects of his life and the meaning of his death. In Gähler, W., Herrlich, H., and Preuβ, G., eds., Recent Developments of General Topology and its Applications; Internat. Conf. in Memory of Felix Hausdorff (1868–1942), Akademie Verlag, Berlin, pp. 85–117
Feferman, Solomon (1964). Some applications of the notions of forcing and generic sets.Fund. Math. 56: 325–345CrossRefGoogle Scholar
Fréchet, Maurice (1906). Sur quelques points du calcul fonctionnel.Rendiconti Circolo Mat. Palermo 22: 1–74CrossRefGoogle Scholar
Fréchet, Maurice (1910). Les dimensions d'un ensemble abstrait.Math. Annalen 68: 145–168CrossRefGoogle Scholar
Fréchet, Maurice (1918). Sur la notion de voisinage dans les ensembles abstraits.Bull. Sci. Math. 42: 138–156Google Scholar
Fréchet, Maurice (1928). Les espaces abstraits. Gauthier-Villars, Paris
Frink, A. H. (1937). Distance functions and the metrization problem.Bull. Amer. Math. Soc. 43: 133–142CrossRefGoogle Scholar
Grattan-Guinness, I. (1970). The Development of the Foundations of Analysis from Euler to Riemann. MIT Press, Cambridge, MA
Gudermann, Christof J. (1838). Theorie der Modular-Functionen und der Modular-Integrale, 4–5 Abschnitt.J. reine angew. Math. 18: 220–258CrossRefGoogle Scholar
Hahn, Hans (1921). Theorie der reellen Funktionen 1. Springer, Berlin
Hardy, Godfrey H. (1916–1919). Sir George Stokes and the concept of uniform convergence.Proc. Cambr. Phil. Soc. 19: 148–156Google Scholar
Hausdorff, Felix (1914). Grundzüge der Mengenlehre. Von Veit, Leipzig. (See References to Chap. 1 for later editions.)
Hausdorff, Felix (1924). Die Mengen G_δ in vollständigen Räumen.Fund. Math. 6: 146–148CrossRefGoogle Scholar
Heine, E. [Eduard, Heinrich] (1870). Ueber trigonometrische Reihen.Journal für die reine und angew. Math. 71: 353–365CrossRefGoogle Scholar
Heine, E. [Eduard, Heinrich] (1872). Die Elemente der Functionenlehre.Journal für die reine und angew. Math. 74: 172–188CrossRefGoogle Scholar
Hoffman, Kenneth M. (1975). Analysis in Euclidean Space. Prentice-Hall, Englewood Cliffs, N. J.
Kelley, John L. (1955). General Topology. Van Nostrand, Princeton
Kisyński, J. (1959–1960). Convergence du type L.Colloq. Math. 7: 205–211CrossRefGoogle Scholar
Kolmogorov, A. N., L. A. Lyusternik, Yu. M. Smirnov, A. N. Tychonov, and S. V. Fomin (1966). Pavel Sergeevich Alexandrov (On his seventieth birthday and the fiftieth anniversary of his scientific activity). Uspekhi Mat. Nauk 21, no. 4: 2–7 (in Russian); transl. in Russian Math. Surveys 21, no. 4: 2–6
Kuratowski, Kazimierz (1935). Quelques problèmes concernant les espaces métriques non-séparables.Fund. Math. 25: 534–545CrossRefGoogle Scholar
Kuratowski, Kazimierz (1958). Topologie, vol. 1. PWN, Warsaw; Hafner, New York
Lebesgue, Henri (1904). Leçons sur l'intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris
Lebesgue, Henri (1907a). Sur le problème de Dirichlet.Rend. Circolo Mat. Palermo 24: 371–402CrossRefGoogle Scholar
Lebesgue, Henri (1907b). Review of Young and Young (1906).Bull. Sci. Math. (Ser. 2) 31: 129–135Google Scholar
Manning, Kenneth R. (1975). The emergence of the Weierstrassian approach to complex analysis.Arch. Hist. Exact Sci. 14: 297–383CrossRefGoogle Scholar
*Mazurkiewicz, Stefan (1916). Über Borelsche Mengen.Bull. Acad. Cracovie 1916: 490–494Google Scholar
Moore, E. H. (1915). Definition of limit in general integral analysis. Proc. Nat. Acad. Sci. USA 1: 628–632CrossRef
Moore, E. H. and Smith, H. L. (1922). A general theory of limits.Amer. J. Math. 44: 102–121CrossRefGoogle Scholar
Osgood, W. F. (1897). Non-uniform convergence and the integration of series term by term.Amer. J. Math. 19: 155–190CrossRefGoogle Scholar
Peano, G. (1890). Sur un courbe, qui remplit toute une aire plane.Math. Ann. 36: 157–160CrossRefGoogle Scholar
Pontryagin, L. S., and E. F. Mishchenko (1956). Pavel Sergeevich Aleksandrov (On his sixtieth birthday and fortieth year of scientific activity). Uspekhi Mat. Nauk 11, no. 4: 183–192 (in Russian)
Reich, Karin (1973). Die Geschichte der Differentialgeometrie von Gauss bis Riemann (1828–1868).Arch. Hist. Exact Sci. 11: 273–382CrossRefGoogle Scholar
van Rootselaar, B. (1970). Bolzano, Bernard. Dictionary of Scientific Biography, II, pp. 273–279. Scribner's, New York
*Seidel, Phillip Ludwig (1847–1849). Note über eine Eigenschaft der Reihen, welche discontinuierliche Functionen darstellen.Abh. der Bayer. Akad. der Wiss. (Munich) 5: 379–393Google Scholar
Siegmund-Schultze, Reinhard (1982). Die Anfänge der Funktionalanalysis und ihr Platz im Umwälzungsprozess der Mathematik um 1900.Arch. Hist. Exact Sci. 26: 13–71Google Scholar
Stokes, George G. (1847–1848). On the critical values of periodic series.Trans. Cambr. Phil. Soc. 8: 533–583; Mathematical and Physical Papers I: 236–313Google Scholar
Stone, Marshall Harvey (1936). The theory of representations for Boolean algebras.Trans. Amer. Math. Soc. 40: 37–111Google Scholar
Stone, Marshall Harvey(1937). Applications of the theory of Boolean rings to general topology.Trans. Amer. Math. Soc. 41: 375–481CrossRefGoogle Scholar
Stone, Marshall Harvey (1947–48). The generalized Weierstrass approximation theorem. Math. Mag. 21: 167–184, 237–254. Repr. in Studies in Modern Analysis 1, ed. R. C. Buck, Math. Assoc. of Amer., 1962, pp. 30–87
Temple, George (1981). 100 Years of Mathematics. Springer, New York
Tietze, Heinrich (1915). Über Funktionen, die auf einer abgeschlossenen Menge stetig sind.J. reine angew. Math. 145: 9–14Google Scholar
Tietze, Heinrich (1923). Beiträge zur allgemeinen Topologie. I. Axiome für verschiedene Fassungen des Umgebungsbegriffs.Math. Annalen 88: 290–312CrossRefGoogle Scholar
Tychonoff, A. [Tikhonov, Andrei Nikolaevich] (1930). Über die topologische Erweiterung von Räumen.Math. Ann. 102: 544–561CrossRefGoogle Scholar
Tychonoff, A. [Tikhonov, Andrei Nikolaevich] (1935). Über einen Funktionenraum.Math. Ann. 111: 762–766CrossRefGoogle Scholar
Urysohn, Paul [Urison, Pavel Samuilovich] (1925). Über die Mächtigkeit der zusammen-hängenden Mengen.Math. Ann. 94: 262–295CrossRefGoogle Scholar
Weierstrass, K. (1885). Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen reeller Argumente. Sitzungsber. königl. preussischen Akad. Wissenschaften 633–639, 789–805. Mathematische Werke, Mayer & Müller, Berlin, 1894–1927, vol. 3, pp. 1–37
Weil, André (1937). Sur les espaces ‘a structure uniforme et sur la topologie générale. Actualités Scientifiques et Industrielles 551, Paris
Young, W. H., and Grace Chisholm Young (1906). The Theory of Sets of Points. Cambridge Univ. Press.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • General Topology
  • R. M. Dudley, Massachusetts Institute of Technology
  • Book: Real Analysis and Probability
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755347.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • General Topology
  • R. M. Dudley, Massachusetts Institute of Technology
  • Book: Real Analysis and Probability
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755347.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • General Topology
  • R. M. Dudley, Massachusetts Institute of Technology
  • Book: Real Analysis and Probability
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755347.003
Available formats
×