Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T22:08:24.610Z Has data issue: false hasContentIssue false

5 - Lp Spaces; Introduction to Functional Analysis

Published online by Cambridge University Press:  06 July 2010

R. M. Dudley
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

The key idea of functional analysis is to consider functions as “points” in a space of functions. To begin with, consider bounded, measurable functions on a finite measure space (X, S, μ) such as the unit interval with Lebesgue measure. For any two such functions, f and g, we have a finite integral ∫ f g d μ = ∫ f(x)g(x)d μ(x). If we consider functions as vectors, then this integral has the properties of an inner product or dot product (f, g): it is nonnegative when f = g, symmetric in the sense that (f, g) (g, f), and linear in f for fixed g. Using this inner product, one can develop an analogue of Euclidean geometry in a space of functions, with a distance d(f, g) = (fg, fg)½, just as in a finite-dimensional vector space. In fact, if μ is counting measure on a finite set with k elements, (f, g) becomes the usual inner product of vectors in ℝk. But if μ is Lebesgue measure on [0, 1], for example, then for the metric space of functions with distance d to be complete, we will need to include some unbounded functions f such that ∫ f2 dμ < ∞. Along the same lines, for each p > 0 and μ there is the collection of functions f which are measurable and for which ∫ |f|p d μ < ∞. This collection is called p or p(μ).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banach, Stefan (1922). Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales.Fundamenta Math. 3: 133–181CrossRefGoogle Scholar
Banach, Stefan (1932). Théorie des operations linéaires. Monografje Matematyczne, Warsaw. 2d ed. (posth.), Chelsea, New York, 1963
Bell, W. C., and Hagood, J. W. (1981). The necessity of sigma-finiteness in the Radon-Nikodym theorem.Mathematika 28: 99–101CrossRefGoogle Scholar
*Bessel, Friedrich Wilhelm (1875). Abhandlungen. Ed. Rudolf Engelmann. 3 vols. Leipzig
Buck, R. Creighton (1980). Sherlock Holmes in Babylon.Amer. Math. Monthly 87: 335–345CrossRefGoogle Scholar
*Bunyakovsky, Viktor Yakovlevich (1859). Sur quelques inégalités concernant les intégrales ordinaires et les intégrales aux différences finies. Mémoires de l'Acad. de St.-Petersbourg (Ser. 7) 1, no. 9
Cauchy, Augustin Louis (1821). Cours d'analyse de l'école Royale Polytechnique (Paris). Also in Oeuvres complètes d'Augustin Cauchy (Ser. 2) 3. Gauthier-Villars, Paris (1897)
Daniell, Percy J. (1920). Stieltjes derivatives.Bull. Amer. Math. Soc. 26: 444–448CrossRefGoogle Scholar
Dixmier, Jacques (1953). Sur les bases orthonormales dans les espaces préhilbertiens.Acta Sci. Math. Szeged 15: 29–30Google Scholar
Euler, Leonhard (1755). Institutiones calculi differentialis. Acad. Imp. Sci. Petropolitanae, St. Petersburg; also in Opera Omnia (Ser. 1) 10
Fatou, Pierre (1906). Séries trigonométriques et séries de Taylor.Acta Math. 30: 335–400CrossRefGoogle Scholar
Fischer, Ernst (1907). Sur la convergence en moyenne. Comptes Rendus Acad. Sci. Paris 144: 1022–1024
Fréchet, Maurice (1907). Sur les ensembles de fonctions et les opérations linéaires. Comptes Rendus Acad. Sci. Paris 144: 1414–1416
Fricke, Walter (1970). Bessel, Friedrich Wilhelm.Dictionary of Scientific Biography, 2, pp. 97–102Google Scholar
*Gram, Jørgen Pedersen (1879). Om Räkkeudviklinger, bestemte ved Hjälp of de mindste Kvadraters Methode (Doctordissertation). Höst, Copenhagen
*Gram, Jørgen Pedersen (1883). Uber die Entwickelung reeller Functionen in Reihen mittelst der Methode der Kleinsten Quadrate.Journal f. reine u. angew. Math. 94: 41–73Google Scholar
Hahn, Hans (1921). Theorie der reellen Funktionen, “I. Band.” Julius Springer, BerlinCrossRef
Hahn, Hans (posth.) and Arthur Rosenthal (1948). Set Functions. Univ. New Mexico Press
Hardy, Godfrey Harold, John Edensor Littlewood, and George Polya (1952). Inequalities. 2d ed. Cambridge Univ. Press. Repr. 1967
Haupt, O. (1960). Arthur Rosenthal (in German). Jahresb. deutsche Math.-Vereinig. 63: 89–96
Hilbert, David (1904–1910). Grundzüge einer allgemeinen Theorie der linearen Integral-gleichungen. Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1904: 49–91, 213–259; 1905: 307–338; 1906: 157–227, 439–480; 1910: 355–417. Also published as a book by Teubner, Leipzig, 1912, repr. Chelsea, New York. 1952
Hölder, Otto (1889). Über einen Mittelwerthssatz.Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 1889: 38–47Google Scholar
Hurwitz, A. (1903). Über die Fourierschen Konstanten integrierbarer Funktionen.Math. Annalen 57: 425–446CrossRefGoogle Scholar
Jordan, Camille (1881). Sur la série de Fourier. Comptes Rendus Acad. Sci. Paris 92: 228–230. Also in Jordan (1961–1964), 4, pp. 393–395
Jordan, Camille (1961–1964). Oeuvres de Camille Jordan. J. Dieudonné and R. Garnier, eds. 4 vols. Gauthier-Villars, Paris
Lebesgue, Henri (1910). Sur l'intégration des fonctions discontinues.Ann. Scient. Ecole Normale Sup. (Ser. 3) 27: 361–450. Also in Lebesgue (1972–1973) 2, pp. 185–274CrossRefGoogle Scholar
Lebesgue, Henri (1972–1973). Oeuvres scientifiques. 5 vols. L'Enseignement Mathématique. Institut de Mathématique, Univ. Genève
Levi, Beppo (1906). Sul principio de Dirichlet.Rendiconti Circ. Mat. Palermo 22: 293–360CrossRefGoogle Scholar
Minkowski, Hermann (1907). Diophantische Approximationen. Teubner, Leipzig
Minkowski, Hermann (1973, posth.). Briefe an David Hilbert. Ed. Lily Rüdenberg and Hans Zassenhaus. Springer, Berlin
Neugebauer, Otto (1935). Mathematische Keilschrift-Texte. 2 vols. Springer, BerlinCrossRef
Neugebauer, Otto (1957). The Exact Sciences in Antiquity. 2d ed. Brown Univ. Press. Repr. Dover, New York (1969)
Neumann, John [Johann] (1940). On rings of operators, III.Ann. Math. 41: 94–161CrossRefGoogle Scholar
Nikodym, Otton Martin (1930). Sur une généralisation des mesures de M. J. Radon.Fundamenta Math. 15: 131–179CrossRefGoogle Scholar
*Parseval des Chênes, Marc-Antoine (1799). Mémoire sur les séries et sur l'intégration complète d'une équation aux différences partielles linéaires du second ordre, à coefficiens constans.Mémoires présentés à l'Institut des Sciences, Lettres et Arts, par divers savans, et lus dans ses assemblées. Sciences math. et phys. (savans étrangers) 1 (1806): 638–648Google Scholar
*Parseval des Chênes, Marc-Antoine (1801). Intégration générale et complète des équations de la propagation du son, l'air étant considéré avec ses trois dimensions.Ibid., pp. 379–398Google Scholar
*Radon, Johann (1913). Theorie und Anwendungen der absolut additiven Mengenfunktionen.Sitzungsber. Akad. Wiss. Wien Abt. IIa: 1295–1438Google Scholar
Riesz, Frédéric [Frigyes] (1906). Sur les ensembles de fonctions. Comptes Rendus Acad. Sci. Paris 143: 738–741
Riesz, Frédéric [Frigyes] (1907a). Sur les systèmes orthogonaux de fonctions. Comptes Rendus Acad. Sci. Paris 144: 615–619
Riesz, Frédéric [Frigyes] (1907b). Sur une espèce de géométrie analytique des fonctions sommables. Comptes Rendus Acad. Sci. Paris 144: 1409–1411
Riesz, Frédéric [Frigyes] (1909). Sur les suites de fonctions mesurables. Comptes Rendus Acad. Sci. Paris 148: 1303–1305
Riesz, Frédéric [Frigyes] (1910). Untersuchungen über Systeme integrierbarer Funktionen.Math. Annalen 69: 449–497CrossRefGoogle Scholar
Riesz, Frédéric [Frigyes] (1934). Zur Theorie des Hilbertschen Raumes.Acta Sci. Math. Szeged 7: 34–38Google Scholar
Rogers, Leonard James (1888). An extension of a certain theorem in inequalities.Messenger of Math. 17: 145–150Google Scholar
Rüdenberg, Lily (1973). Erinnerungen an H. Minkowski. In Minkowski (1973), pp. 9–16Google Scholar
Schmidt, Erhard (1907). Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener.Math. Annalen 63: 433–476CrossRefGoogle Scholar
Schmidt, Erhard (1907). Auflösung der allgemeinen linearen Integralgleichung.Math. Annalen 64: 161–174CrossRefGoogle Scholar
Schmidt, Erhard (1908). Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten.Rend. Circ. Mat. Palermo 25: 53–77CrossRefGoogle Scholar
*Schwarz, Hermann Amandus (1885). Über ein die Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung.Acta Soc. Scient. Fenn. 15: 315–362Google Scholar
Schweder, Tore (1980). Scandinavian statistics, some early lines of development.Scand. J. Statist 7: 113–129Google Scholar
Siegmund-Schultze, Reinhard (1982). Die Anfänge der Funktionalanalysis und ihr Platz im Umwälzungsprozess der Mathematik um 1900.Arch. Hist. Exact Sci. 26: 13–71Google Scholar
Stanley, Richard P. (1971). Theory and application of plane partitions.Studies in Applied Math. 50: 167–188CrossRefGoogle Scholar
Steinhaus, Hugo (1961). Banach, Stefan, 1892–1945. Scripta Math. 26: 93–100
Waerden, Bartel Leendert (1939). Nachruf auf Otto Hölder.Math. Ann. 116: 157–165CrossRefGoogle Scholar
Watson, George Neville (1944). A Treatise on the Theory of Bessel Functions, 2d ed. Cambridge Univ. Press, repr. 1966; 1st ed., 1922
Wiener, Norbert (1922). Limit in terms of continuous transformation. Bull. Soc. Math. France 50: 119–134CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×