Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T23:11:06.885Z Has data issue: false hasContentIssue false

5 - Microwave Liquid Crystal Technology

Published online by Cambridge University Press:  20 May 2022

Philippe Ferrari
Affiliation:
Université de Grenoble
Rolf Jakoby
Affiliation:
Technische Universität, Darmstadt, Germany
Onur Hamza Karabey
Affiliation:
ALCAN Systems GmbH, Germany
Gustavo P. Rehder
Affiliation:
Escola Politécnica da Universidade de São Paulo
Holger Maune
Affiliation:
Technische Universität, Darmstadt, Germany
Get access

Summary

The chapter introduces the Microwave Liquid Crystal Technology which features unique properties for reconfigurable systems for mm-wave communications. After an intrioduction of the material's properties, different implementations of components and systems are compared and discussed such as phase shifters, tunable filters and steerable antenna systems. These LC-based components are implemented for wide frequency range from about 10 GHz up to THz. Characterization, modelling and simulation are key for the design of such components,. Therefore, suited methodology is presented. Additionally, anliterature review on available realizations and technologies is given.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vorhaus, J. L., Pucel, R. A., and Tajima, Y., “Monolithic dual-gate GaAs FET digital phase shifter,” IEEE Transactions on Microwave Theory and Techniques, vol. 30, no. 7, pp. 982992, 1982. DOI: http://10.1109/TMTT.1982.1131187CrossRefGoogle Scholar
Barker, N. S. and Rebeiz, G. M., “Optimization of distributed MEMS phase shifters,” in IEEE MTT-S International Microwave Symposium, 1999, vol. 1, pp. 299302.Google Scholar
Barker, S. and Rebeiz, G. M., “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 18811890, 1998. DOI: http://10.1109/22.734503CrossRefGoogle Scholar
Kim, H.-T. et al., “V-band 2-b and 4-b low-loss and low-voltage distributed MEMS digital phase shifter using metal-air-metal capacitors,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 12, pp. 29182923, 2002.Google Scholar
Shih, S. E. et al., “A W-band 4-bit phase shifter in multilayer scalable array systems,” in 2007 IEEE Compound Semiconductor Integrated Circuits Symposium, pp. 1–4, 2007.Google Scholar
Stehle, A. et al., “RF-MEMS switch and phase shifter optimized for W-band,” in European Microwave Conference (EuMC), 2008/October, pp. 104–107.CrossRefGoogle Scholar
Kang, D.-W., Kim, J.-G., Min, B.-W., and Rebeiz, G. M., “Single and four-element Ka-band transmit/receive phased-array silicon RFICs with 5-bit amplitude and phase control,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 35343543, 2009. DOI: http://10.1109/tmtt.2009.2033302Google Scholar
Yang, J. G. and Yang, K., “Ka-band 5-bit MMIC phase shifter using InGaAs PIN switching diodes,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 3, pp. 151153, 2011. DOI: http://10.1109/LMWC.2010.2104314CrossRefGoogle Scholar
Chen, N., Zhen, J., and Pang, Q., “A millimeter-wave GaAs 5–bit MMIC digital phase shifter,” in 2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, 2013/October: IEEE.CrossRefGoogle Scholar
Chang, C., Chen, Y., and Hsieh, S., “A V-band three-state phase shifter in CMOS-MEMS technology,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 5, pp. 264266, 2013. DOI: http://10.1109/LMWC.2013.2253309Google Scholar
Shah, U. et al., “Submillimeter-wave 3.3-bit RF MEMS phase shifter integrated in micromachined waveguide,” IEEE Transactions on Terahertz Science and Technology, vol. 6, no. 5, pp. 706715, 2016. DOI: http://10.1109/TTHZ.2016.2584924Google Scholar
Chakraborty, A. and Gupta, B., “Paradigm phase shift: RF MEMS phase shifters: An overview,” IEEE Microwave Magazine, vol. 18, no. 1, pp. 2241, 2017. DOI: http://10.1109/mmm.2016.2616155CrossRefGoogle Scholar
Goelden, F., Mueller, S., Scheele, P., Wittek, M., and Jakoby, R., “IP3 measurements of liquid crystals at microwave frequencies,” in European Microwave Conference (EuMC), 2006/September: IEEE.Google Scholar
Goelden, F., “Liquid crystal based microwave components with fast response times: Material, technology, power handling capability,” 2010. http://tuprints.ulb.tu-darmstadt.de/2203/Google Scholar
Mueller, S., Grundlegende Untersuchungen steuerbarer passiver Flüssigkristall Komponenten für die Mikrowellentechnik. 2007.Google Scholar
Gaebler, A. et al., “Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves,” International Journal of Antennas and Propagation, vol. 2009, pp. 17, 2009. DOI: http://10.1155/2009/876989Google Scholar
Wolff, I., “Integrated beam steerable antennas in LTCC-technology,” in Proceedings of the International Workshop on Antenna Technology (iWAT), 2010/March, pp. 1–4.Google Scholar
Heunisch, A., Schulz, B., Rabe, T., Strunck, S., Follmann, R., and Manabe, A., “LTCC antenna array with integrated liquid crystal phase shifter for satellite communication,” Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), vol. 2012, no. CICMT, pp. 000097000102, 2012. DOI: http://10.4071/cicmt-2012–tp15CrossRefGoogle Scholar
Follmann, R. et al., “Liquida-Sky: A tunable liquid crystal filter for space applications,” in 2013 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 2013/September: IEEE.CrossRefGoogle Scholar
Jost, M. et al., “Continuously tuneable liquid crystal based stripline phase shifter realised in LTCC technology,” in European Microwave Conference (EuMC), 2015/September: IEEE.Google Scholar
Strunck, S. et al., “Reliability study of a tunable Ka-band SIW-phase shifter based on liquid crystal in LTCC-technology,” International Journal of Microwave and Wireless Technologies, vol. 7, no. 5, pp. 521527, 2014. DOI: http://10.1017/S175907871400083XGoogle Scholar
Strunck, S., Flüssigkristall-basierte und LTCC-integrierte elektrisch steuerbare Mikrowellenphasenschieber und -polarisatoren. Herzogenrath, Germany: Shaker, 2015.Google Scholar
Gaebler, A., “Synthese steuerbarer Hochfrequenzschaltungen und Analyse Flüssigkristall-basierter Leitungsphasenschieber in Gruppenantennen für Satellitenanwendungen im Ka-Band,” ETIT, 2015. http://tuprints.ulb.tu-darmstadt.de/4691/.Google Scholar
Prasetiadi, A. E. et al., “Liquid-crystal-based amplitude tuner and tunable SIW filter fabricated in LTCC technology,” International Journal of Microwave and Wireless Technologies, vol. 10, no. 5–6, pp. 674681, 2018. DOI: http://10.1017/S1759078718000600 www.cambridge.org/core/article/liquidcrystalbased-amplitude-tuner-and-tunable-siw-filter-fabricated-in-ltcc-technology/73D699A1F8CF43C44D3AEB4E128F5F5DCrossRefGoogle Scholar
Karabey, O. H., Gaebler, A., Strunck, S., and Jakoby, R., “A 2-D electronically steered phased-array antenna with 2 x 2 elements in LC display technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 12971306, 2012. DOI: http://10.1109/TMTT.2012.2187919CrossRefGoogle Scholar
Karabey, O. H., Electronic Beam Steering and Polarization Agile Planar Antennas in Liquid Crystal Technology. Cham, Switzerland: Springer International Publishing, 2013.Google Scholar
Weickhmann, C., Mehmood, A., Olcen, A. B., Sun, Y., and Jakoby, R., “A low-cost, flat, electronically steerable array antenna for new massive NGEO constellations ground terminals and future 5G,” in ESA Antenna Workshop, 2018.Google Scholar
Weickhmann, C., Mehmood, A., Olcen, A. B., Sun, Y., and Jakoby, R., “A low-cost, flat, electronically steerable array antenna for new massive NGEO constellations ground terminals and future 5G,” in European Conference on Antennas and Propagation (EuCAP), 2019.Google Scholar
Weil, C., Luessem, G., and Jakoby, R., “Tunable inverted-microstrip phase shifter device using nematic liquid crystals,” in IEEE MTT-S International Microwave Symposium, 2002, vol. 1, pp. 367371.Google Scholar
Weil, C., Muller, S., Scheele, P., Best, P., Lussem, G., and Jakoby, R., “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electronics Letters, vol. 39, no. 24, pp. 17321734, 2003. DOI: http://10.1049/el:20031150CrossRefGoogle Scholar
Mueller, S., Felber, C., Scheele, P., Wittek, M., Hock, C., and Jakoby, R., “Passive tunable liquid crystal finline phase shifter for millimeter waves,” in European Microwave Conference (EuMC), 2005.Google Scholar
Manabe, A., “Liquid crystals for microwave applications.” In Proceedings of SPIE 8642, Emerging Liquid Crystal Technologies VIII, 86420S. DOI: http://10.1117/12.2016578Google Scholar
Weickhmann, C., Jakoby, R., Constable, E., and Lewis, R. A., “Time-domain spectroscopy of novel nematic liquid crystals in the terahertz range,” in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013, pp. 1–2. DOI: http://10.1109/IRMMW-THz.2013.6665423Google Scholar
Jost, M. et al., “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro- and millimetre wave components,” Molecular Crystals and Liquid Crystals, vol. 610, no. 1, pp. 173186, 2015. DOI: http://10.1080/15421406.2015.1025645Google Scholar
Fritzsch, C. and Wittek, M., “Recent developments in liquid crystals for microwave applications,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017/July: IEEE.CrossRefGoogle Scholar
Yaghmaee, P., Karabey, O. H., Bates, B., Fumeaux, C., and Jakoby, R., “Electrically tuned microwave devices using liquid crystal technology,” International Journal of Antennas and Propagation, vol. 2013, pp. 19, 2013. DOI: http://10.1155/2013/824214Google Scholar
Maune, H., Jost, M., Reese, R., Polat, E., Nickel, M., and Jakoby, R., “Microwave liquid crystal technology,” Crystals, vol. 8, no. 9, 2018. DOI: http://10.3390/cryst8090355Google Scholar
Maune, H. et al., “Tunable microwave component technologies for SatCom-platforms,” Frequenz, vol. 71, p. 129, 2017.Google Scholar
Zografopoulos, D. C., Ferraro, A., and Beccherelli, R., “Liquid-crystal high-frequency microwave technology: Materials and characterization,” Advanced Materials Technologies, pp. 1800447–1800447, 2018. DOI: http://10.1002/admt.201800447Google Scholar
Yang, D.-K. and Wu, S.-T., Fundamentals of Liquid Crystal Devices, 2nd ed. Hoboken, NJ: John Wiley & Sons, 2014.CrossRefGoogle Scholar
Dąbrowski, R., Kula, P., and Herman, J., “High Birefringence Liquid Crystals,” Crystals, vol. 3, no. 3, pp. 443482, 2013. DOI: http://10.3390/cryst3030443Google Scholar
Czub, J., Urban, S., Dąbrowski, R., and Gestblom, B., “Dielectric properties of liquid crystalline isothiocyanato-tolane derivatives with fluorine atom at various lateral positions,” Acta Physica Polonica A, vol. 107, no. 6, pp. 947958, 2005. DOI: http://10.12693/aphyspola.107.947Google Scholar
Dubois, F. et al., “Large microwave birefringence liquid-crystal characterization for phase-shifter applications,” Japanese Journal of Applied Physics, vol. 47, no. 5, pp. 35643567, 2008. DOI: http://10.1143/jjap.47.3564Google Scholar
Goelden, F. et al., “Tunable microwave phase shifter using thin layer ferroelectric liquid crystals,” 2007/January. http://tubiblio.ulb.tu-darmstadt.de/29060/Google Scholar
Lapanik, A., “Liquid crystal systems for microwave applications: Single compounds and mixtures for microwave applications; Dielectric, microwave studies on selected systems,” PhD thesis, Technische Universität Darmstadt, 2009.Google Scholar
Lapanik, A. et al., “Nematic LCs mixtures with high birefringence in the microwave region,” Frequenz, vol. 65, no. 1–2, pp. 1519, 2011.Google Scholar
Lapanik, A., Haase, W., Golden, F., Muller, S., and Jakoby, R., “Highly birefringent nematic mixtures at room temperature for microwave applications,” Optical Engineering, vol. 50, no. 8, pp. 081208081208, 2011.Google Scholar
Penirschke, A. et al., “Cavity perturbation method for characterization of liquid crystals up to 35 GHz,” in European Microwave Conference (EuMC), 2004/October, vol. 2, pp. 545548.Google Scholar
Mueller, S. et al., “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 6, pp. 19371945, 2005. DOI: http://10.1109/TMTT.2005.848842Google Scholar
Ong, H. L., “Measurement of nematic liquid crystal splay and bend elastic constants with obliquely incident light,” Journal of Applied Physics, vol. 70, no. 4, pp. 20232030, 1991. DOI: http://10.1063/1.349461Google Scholar
Yaghmaee, P., Kaufmann, T., Bates, B., and Fumeaux, C., “Effect of polyimide layers on the permittivity tuning range of liquid crystals,” in European Conference on Antennas and Propagation (EUCAP), 2012, pp. 35793582.Google Scholar
Tarumi, K., Finkenzeller, U., and Schuler, B., “Dynamic behaviour of twisted nematic liquid crystals,” Japanese Journal of Applied Physics, vol. 31, no. Part 1, No. 9A, pp. 28292836, 1992. DOI: http://10.1143/jjap.31.2829CrossRefGoogle Scholar
Stewart, I. W., The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction. London: Taylor & Francis, 2004.Google Scholar
Jost, M., Liquid Crystal Mixed Beam-Switching and Beam-Steering Network in Hybrid Metallic and Dielectric Waveguide Technology. PhD thesis, Teschnische Universität of Darmstadt, 2018.Google Scholar
Goelden, F., Gaebler, A., Mueller, S., Lapanik, A., Haase, W., and Jakoby, R., “Liquid-crystal varactors with fast switching times for microwave applications,” Electronics Letters, vol. 44, no. 7, pp. 480480, 2008. DOI: http://10.1049/el:20080161Google Scholar
Goelden, F., Lapanik, A., Gaebler, A., Mueller, S., Haase, W., and Jakoby, R., “Characterization and application of liquid crystals at microwave frequencies,” Frequenz, vol. 62, no. 3–4, 2008. DOI: http://10.1515/freq.2008.62.3–4.57Google Scholar
Fujikake, H., Kuki, T., Nomoto, T., Tsuchiya, Y., and Utsumi, Y., “Thick polymer-stabilized liquid crystal films for microwave phase control,” Journal of Applied Physics, vol. 89, no. 10, pp. 52955298, 2001. DOI: http://10.1063/1.1365081Google Scholar
Utsumi, Y., Kamei, T., Saito, K., and Moritake, H., “Increasing the speed of microstrip line-type PDLC devices,” in IEEE MTT-S International Microwave Symposium, 2005/June.Google Scholar
Nguyen, T., Umeno, S., Higuchi, H., Kikuchi, H., and Moritake, H., “Improvement of decay time in nematic-liquid-crystal-loaded coplanar-waveguide-type microwave phase shifter by polymer stabilizing method,” Japanese Journal of Applied Physics, vol. 53, no. 1S, pp. 01AE0801AE08, 2013.Google Scholar
Kuki, T., Fujikake, H., Kamoda, H., and Nomoto, T., “Microwave variable delay line using a membrane impregnated with liquid crystal,” in IEEE MTT-S International Microwave Symposium, 2002: IEEE.Google Scholar
Kamoda, H., Kuki, T., Fujikake, H., and Nomoto, T., “Millimeter-wave beam former using liquid crystal,” Electronics and Communications in Japan (Part II: Electronics), vol. 88, no. 8, pp. 1018, 2005. DOI: http://10.1002/ecjb.20173Google Scholar
Paul, S. N., Dhar, R., Verma, R., Sharma, S., and Dabrowski, R., “Change in dielectric and electro-optical properties of a nematic material (6CHBT) due to the dispersion of BaTiO3 nanoparticles,” Molecular Crystals and Liquid Crystals, vol. 545, no. 1, pp. 10513291111335, 2011. DOI: http://10.1080/15421406.2011.571961Google Scholar
Ryzhkova, A. V., Podgornov, F. V., Gaebler, A., Jakoby, R., and Haase, W., “Measurements of the electrokinetic forces on dielectric microparticles in nematic liquid crystals using optical trapping,” Journal of Applied Physics, vol. 113, no. 24, pp. 244902244902, 2013. DOI: http://10.1063/1.4809976Google Scholar
Karabey, O. H., “Microwave material properties of nanoparticle-doped nematic liquid crystals,” Frequenz, vol. 69, no. 3–4, 2015. DOI: http://10.1515/freq-2014–0169Google Scholar
Garbovskiy, Y. and Glushchenko, A., “Ferroelectric nanoparticles in liquid crystals: Recent progress and current challenges,” Nanomaterials, vol. 7, no. 11, pp. 361361, 2017. DOI: http://10.3390/nano7110361Google Scholar
Goelden, F., Lapanik, A., Mueller, S., Gaebler, A., Haase, W., and Jakoby, R., “Investigations on the behavior of ferroelectric liquid crystals at microwave frequencies,” in European Microwave Conference (EuMC), 2007: IEEE.Google Scholar
Moritake, H., Kim, J., Toda, K., and Yoshino, K., “Dynamic viscosity change measurement of liquid and liquid crystal using propagation velocity change of shear horizontal wave,” in IEEE International Conference on Dielectric Liquids, 2005. ICDL 2005, June 26–July 1, 2005, pp. 257–260. DOI: http://10.1109/ICDL.2005.1490075Google Scholar
Arora, P., Mikulko, A., Podgornov, F., and Haase, W., “Dielectric and electro-optic properties of new ferroelectric liquid crystalline mixture doped with carbon nanotubes,” Molecular Crystals and Liquid Crystals, vol. 502, no. 1, pp. 18, 2009. DOI: http://10.1080/15421400902813592Google Scholar
Mikułko, A., Arora, P., Glushchenko, A., Lapanik, A., and Haase, W., “Complementary studies of BaTiO3 nanoparticles suspended in a ferroelectric liquid-crystalline mixture,” EPL (Europhysics Letters), vol. 87, no. 2, pp. 2700927009, 2009. DOI: http://10.1209/0295–5075/87/27009Google Scholar
Kuki, T., Fujikake, H., and Nomoto, T., “Microwave variable delay line using dual-frequency switching-mode liquid crystal,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 11, pp. 26042609, 2002. DOI: http://10.1109/tmtt.2002.804510Google Scholar
Mueller, S., Goelden, F., Scheele, P., Wittek, M., Hock, C., and Jakoby, R., “Passive phase shifter for W-band applications using liquid crystals,” in European Microwave Conference (EuMC), 2006, pp. 306–309.Google Scholar
Lim, K. C., Margerum, J. D., and Lackner, A. M., “Liquid crystal millimeter wave electronic phase shifter,” Applied Physics Letters, vol. 62, no. 10, pp. 10651067, 1993.CrossRefGoogle Scholar
Dolfi, D., Labeyrie, M., Joffre, P., and Huignard, J. P., “Liquid crystal microwave phase shifter,” Electronics Letters, vol. 29, no. 10, pp. 926928, 1993. DOI: http://10.1049/el:19930618Google Scholar
Martin, N., Laurent, P., Prigent, G., Gelin, P., and Huret, F., “Technological evolution and performances improvements of a tunable phase-shifter using liquid crystal,” Microwave and Optical Technology Letters, vol. 43, no. 4, pp. 338341, 2004. DOI: http://10.1002/mop.20463Google Scholar
Kuki, T., Fujikake, H., Nomoto, T., and Utsumi, Y., Design of a microwave variable delay line using liquid crystal, and a study of its insertion loss. Electronics and Communications in Japan, Pt. II, 85, pp. 36–42, 2002. DOI: http://10.1002/ecjb.1091Google Scholar
Mueller, S., Scheele, P., Weil, C., Wittek, M., Hock, C., and Jakoby, R., “Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals,” in IEEE MTT-S International Microwave Symposium, 2004, vol. 2, pp. 11531156.Google Scholar
Jakoby, R., Scheele, P., Muller, S., and Weil, C., “Nonlinear dielectrics for tunable microwave components,” in 15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No.04EX824), May 17–19, vol. 2, pp. 369378, 2004. DOI: http://10.1109/MIKON.2004.1357043Google Scholar
Gaebler, A., Goelden, F., Manabe, A., Goebel, M., Mueller, S., and Jakoby, R., “Investigation of high performance transmission line phase shifters based on liquid crystal,” in European Microwave Conference (EuMC), 2009, pp. 594–597.Google Scholar
Weickhmann, C., Gaebler, A., Jost, M., Gehring, R., Nathrath, N., and Jakoby, R., “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electronics Letters, vol. 49, no. 21, pp. 13451347, 2013. DOI: http://10.1049/el.2013.2281CrossRefGoogle Scholar
Weickhmann, C., “Liquid crystals towards terahertz: Characterisation and tunable waveguide phase shifters for millimetre-wave and terahertz beamsteering antennas,” PhD thesis, Technische Universität Darmstadt, 2017.Google Scholar
Karabey, O. H., Goelden, F., Gaebler, A., Strunck, S., and Jakoby, R., “Tunable loaded line phase shifters for microwave applications,” in IEEE MTT-S International Microwave Symposium, 2011/June: IEEE.CrossRefGoogle Scholar
Goelden, F., Gaebler, A., Goebel, M., Manabe, A., Mueller, S., and Jakoby, R., “Tunable liquid crystal phase shifter for microwave frequencies,” Electronics Letters, vol. 45, no. 13, pp. 686687, 2009. DOI: http://10.1049/el.2009.1168Google Scholar
Franc, A., Karabey, O. H., Rehder, G., Pistono, E., Jakoby, R., and Ferrari, P., “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 39053915, 2013. DOI: http://10.1109/TMTT.2013.2282288Google Scholar
Jost, M. et al., “Miniaturized liquid crystal slow wave phase shifter based on nanowire filled membranes,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 8, pp. 681683, 2018. DOI: http://10.1109/lmwc.2018.2845938Google Scholar
Tanaka, M., Nose, T., and Sato, S., “Millimeter-wave transmission properties of nematic liquid-crystal cells with a grating-patterned electrode structure,” Japanese Journal of Applied Physics, vol. 39, no. Part 1, no. 11, pp. 63936396, 2000. DOI: http://10.1143/jjap.39.6393CrossRefGoogle Scholar
Tanaka, M. and Sato, S., “Millimeter-wave deflection properties of liquid crystal prism cells with stack-layered structure,” Japanese Journal of Applied Physics, vol. 40, no. Part 2, no. 10B, pp. L1123L1125, 2001. DOI: http://10.1143/jjap.40.l1123CrossRefGoogle Scholar
Tanaka, M. and Sato, S., “Electrically controlled millimeter-wave focusing properties of liquid crystal lens,” Japanese Journal of Applied Physics, vol. 41, no. Part 1, No. 8, pp. 53325333, 2002. DOI: http://10.1143/jjap.41.5332Google Scholar
Yang, F. and Sambles, J. R., “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Applied Physics Letters, vol. 81, no. 11, pp. 20472049, 2002. DOI: http://10.1063/1.1507615Google Scholar
Yang, F. and Sambles, J. R., “Microwave liquid-crystal variable phase grating,” Applied Physics Letters, vol. 85, no. 11, pp. 20412043, 2004. DOI: http://10.1063/1.1787898Google Scholar
Kundtz, N., “Next generation communications for next generation satellites,” Microwave Journal, vol. 57, 2014.Google Scholar
Kymeta, “Kymeta delivers sustained industry-first performance levels,” press release, 2016. www.kymetacorp.com/news/kymeta-delivers-sustained-industry-first-performance-levels/Google Scholar
Alcan Systems, “SES and ALCAN, a German smart antenna company, are working together to develop a new flat panel antenna for SESs O3b mPOWER system,” press release, 2018. www.alcansystems.com/de/press-release-ses-and-alcan-a-german-smart-antenna-company-are-working-together-to-develop-a-new-flat-panel-antenna-for-sess-o3b-mpower-system/Google Scholar
Systems, A., “ALCAN successfully completes world’s first liquid crystal based phased array antenna field test for satellite communication,” 2018.Google Scholar
Lapanik, V., Sasnouski, G., Timofeev, S., Shepeleva, E., Evtyushkin, G., and Haase, W., “New highly anisotropic liquid crystal materials for high-frequency applications,” Liquid Crystals, vol. 45, no. 8, pp. 12421249, 2018/06/21 2018. DOI: http://10.1080/02678292.2018.1427810CrossRefGoogle Scholar
Gilles Gennes de, P. and Prost, J., The Physics of Liquid Crystal. Oxford: Clarendon Press, 1993.Google Scholar
Goodby, J. W., Collings, P. J., Kato, T., Tschierske, C., Gleeson, H., and Raynes, P., Handbook of Liquid Crystals. Hoboken, NJ: Wiley-VCH, 1998.Google Scholar
Kawamoto, H., “The history of liquid-crystal displays,” Proceedings of the IEEE, vol. 90, no. 4, pp. 460500, 2002. DOI: http://10.1109/JPROC.2002.1002521Google Scholar
Collings, P. J. and Hird, M., Introduction to Liquid Crystals: Chemistry and Physics. Boca Raton, FL: CRC Press, 2017.Google Scholar
Blinov, L. M. and Chigrinov, V. G., Electrooptic Effects in Liquid Crystal Materials. New York: Springer-Verlag, 1994.Google Scholar
Cheung, T. S. D. and Long, J. R., “Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 11831200, 2006. DOI: http://10.1109/JSSC.2006.872737Google Scholar
Oseen, C. W., “The theory of liquid crystals,” Transactions of the Faraday Society, vol. 29, no. 140, pp. 883899, 1933. DOI: http://10.1039/TF9332900883Google Scholar
Frank, F. C., “I. Liquid crystals. On the theory of liquid crystals,” Discussions of the Faraday Society, vol. 25, no. 0, pp. 1928, 1958. DOI: http://10.1039/DF9582500019Google Scholar
Kleman, M. and Laverntovich, O. D., Soft Matter Physics: An Introduction. New York: Springer-Verlag, 2004.Google Scholar
Baker-Jarvis, J. R., Janezic, M. D., Grosvenor, J. H. Jr, and Geyer, R. G., “Transmission/reflection and short-circuit line methods for measuring permittivity and permeability| NIST,” Technical Note (NIST TN)-1355, vol. 1355, no. Technical Note (NIST TN)-1355, 1992.Google Scholar
Nicolson, A. M. and Ross, G. F., “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Transactions on Instrumentation and Measurement, vol. 19, no. 4, pp. 377382, 1970. DOI: http://10.1109/TIM.1970.4313932Google Scholar
Weir, W. B., “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proceedings of the IEEE, vol. 62, no. 1, pp. 3336, 1974. DOI: http://10.1109/PROC.1974.9382Google Scholar
Parka, J., Krupka, J., Dąbrowski, R., and Wosik, J., “Measurements of anisotropic complex permittivity of liquid crystals at microwave frequencies,” Journal of the European Ceramic Society, vol. 27, no. 8–9, pp. 29032905, 2007. DOI: http://10.1016/j.jeurceramsoc.2006.11.015Google Scholar
Kowerdziej, R. et al., “Dielectric properties of highly anisotropic nematic liquid crystals for tunable microwave components,” Applied Physics Letters, vol. 103, no. 17, p. 172902, 2013/10/21 2013. DOI: http://10.1063/1.4826504.CrossRefGoogle Scholar
Karabey, O. H., Goelden, F., Gaebler, A., and Jakoby, R., “Precise broadband microwave material characterization of liquids,” in European Microwave Conference (EuMC), 2010, pp. 1591–1594.Google Scholar
Hu, W., Karabey, O. H., Prasetiadi, A. E., Jost, M., and Jakoby, R., “Temperature controlled artificial coaxial line for microwave characterization of liquid crystal,” GeMiC 2014; German Microwave Conference, pp. 1–4, 2014.Google Scholar
Mueller, S. et al., “W-band characterization of anisotropic liquid crystals at room temperature,” in European Microwave Conference (EuMC), 2008, pp. 119–122.Google Scholar
Weickhmann, C. et al., “Measuring liquid crystal permittivity with high accuracy,” in Annual Condensed Matter and Materials Meeting, 2015.Google Scholar
Gaebler, A., Goelden, F., Karabey, O. H., and Jakoby, R., “A FDFD based eigen-dielectric formulation of the Maxwell equations for material characterization in arbitrary waveguide structures,” in IEEE MTT-S International Microwave Symposium, 2010/May: IEEE.Google Scholar
Gaebler, A., Goelden, F., Mueller, S., Penirschke, A., and Jakoby, R., “Direct simulation of material permittivities by using an eigen-susceptibility formulation of the vector variational approach,” in 2009 IEEE Instrumentation and Measurement Technology Conference, 2009/May: IEEE.Google Scholar
Gaebler, A., Goelden, F., Mueller, S., and Jakoby, R., “Triple-mode cavity perturbation method for the characterization of anisotropic media,” in European Microwave Conference (EuMC), 2008, pp. 909–912.Google Scholar
Cai, L., Xu, H., Li, J., and Chu, D., “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Japanese Journal of Applied Physics, vol. 56, no. 1, pp. 011701011701, 2017. DOI: http://10.7567/jjap.56.011701Google Scholar
Deo, P., Mirshekar-Syahkal, D., Seddon, L., Day, S. E., and Fernandez, F. A., “Microstrip device for broadband (15–65 GHz) measurement of dielectric properties of nematic liquid crystals,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 13881398, 2015. DOI: http://10.1109/tmtt.2015.2407328CrossRefGoogle Scholar
James, R., Fernandez, F. A., Day, S. E., Bulja, S., and Mirshekar-Syahkal, D., “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 32933297, 2009. DOI: http://10.1109/tmtt.2009.2033864Google Scholar
Krupka, J., Derzakowski, K., Riddle, B., and Baker-Jarvis, J., “A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature,” Measurement Science and Technology, vol. 9, no. 10, pp. 17511756, 1998. DOI: http://10.1088/0957–0233/9/10/015Google Scholar
Schaub, D. E. and Oliver, D. R., “A circular patch resonator for the measurement of microwave permittivity of nematic liquid crystal,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 7, pp. 18551862, 2011. DOI: http://10.1109/TMTT.2011.2142190Google Scholar
Yazdanpanahi, M., Bulja, S., Mirshekar-Syahkal, D., James, R., Day, S. E., and Fernandez, F. A., “Measurement of dielectric constants of nematic liquid crystals at mm-wave frequencies using patch resonator,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 12, pp. 30793085, 2010. DOI: http://10.1109/TIM.2010.2062910CrossRefGoogle Scholar
Koeberle, M. et al., “Material characterization of liquid crystals at THz-frequencies using a free space measurement setup,” in German Microwave Conference, 2008/March, pp. 1–4.Google Scholar
Pogson, E. M., Lewis, R. A., Koeberle, M., and Jacoby, R., “Terahertz time-domain spectroscopy of nematic liquid crystals,” in Nonlinear Optics and Applications IV, Eggleton, B. J., Gaeta, A. L., and Broderick, N. G. R., Eds., 2010/April: SPIE.Google Scholar
Reuter, M. et al., “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Materials, vol. 1, no. 1, pp. 012107012107, 2013. DOI: http://10.1063/1.4808244Google Scholar
Berk, A., “Variational principles for electromagnetic resonators and waveguides,” IRE Transactions on Antennas and Propagation, vol. 4, no. 2, pp. 104111, 1956. DOI: http://10.1109/TAP.1956.1144365Google Scholar
Rumsey, V. H., “Reaction concept in electromagnetic theory,” Physical Review, 1954. DOI: http://10.1103/PhysRev.94.1483Google Scholar
Collin, R. E., Foundations for Microwave Engineering, 2nd ed. Hoboken, NJ: Wiley-IEEE Press, 2001.Google Scholar
Pozar, D. M., Microwave Engineering. Hoboken, NJ: John Wiley & Sons, 2012.Google Scholar
Bethe, H. A., “Theory of diffraction by small holes,” Biophysical Reviews, vol. 66, no. 7–8, pp. 163182, 1944. DOI: http://10.1103/PhysRev.66.163Google Scholar
Gao, J., “Analytical formulas for the resonant frequency changes due to opening apertures on cavity walls,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 311, no. 3, pp. 437443, 1992. DOI: http://10.1016/0168–9002(92)90638–K. www.sciencedirect.com/science/article/pii/016890029290638K.Google Scholar
Chen, L. F., Ong, C. K., Neo, C. P., Varadan, V. V., and Varadan, V. K., Microwave Electronics: Measurement and Materials Characterization. Hoboken, NJ: John Wiley & Sons, 2005.Google Scholar
Eisenstadt, W. R. and Eo, Y., “S-parameter-based IC interconnect transmission line characterization,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 15, no. 4, pp. 483490, 1992. DOI: http://10.1109/33.159877Google Scholar
Collier, R. and Skinner, D., Microwave Measurements, 3rd ed. London: The Institution of Engineering and Technology, 2007.CrossRefGoogle Scholar
Bulja, S., Mirshekar-Syahkal, D., James, R., Day, S. E., and Fernandez, F. A. b., “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Transactions on Microwave Theory and Techniques, 2010. DOI: http://10.1109/tmtt.2010.2054332Google Scholar
Mueller, S. et al., “Liquid crystals: Microwave characterization and tunable devices,” Frequenz, vol. 61, no. 9–10, 2007. DOI: http://10.1515/freq.2007.61.9–10.217Google Scholar
Mössinger, A. et al., “Electronically reconfigurable LC-reflectarray with 2D scanning capability and SU-8 structured cavity,” Frequenz, vol. 62, no. 3–4, 2008. DOI: http://10.1515/freq.2008.62.3–4.62Google Scholar
Christie, S., Cahill, R., Mitchell, N., Manabe, A., and Munro, Y., “Electronically scanned Rotman lens antenna with liquid crystal phase shifters,” Electronics Lettersvol. 49, no. 7, pp. 445447, 2013. DOI: http://10.1049/el.2013.0020Google Scholar
Schüßler, H. W. and Steffen, P., “Halfband filters and Hilbert transformers,” Circuits, Systems, and Signal Processing, vol. 17, no. 2, pp. 137164, 1998. DOI: http://10.1007/bf01202851Google Scholar
Garbovskiy, Y. et al., “Liquid crystal phase shifters at millimeter wave frequencies,” Journal of Applied Physics, vol. 111, no. 5, pp. 054504054504, 2012. DOI: http://10.1063/1.3691202Google Scholar
Jost, M. et al., “Liquid crystal based low-loss phase shifter for W-band frequencies,” Electronics Letters, vol. 49, no. 23, pp. 14601462, 2013. DOI: http://10.1049/el.2013.2830Google Scholar
Strunck, S., Karabey, O. H., Weickhmann, C., Gaebler, A., and Jakoby, R., “Continuously tunable phase shifters for phased arrays based on liquid crystal technology,” in Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, 2013/October, pp. 82–88.Google Scholar
Tebbe, M., Hoehn, A., Nathrath, N., and Weickhmann, C., “Manufacturing and testing of liquid crystal phase shifters for an electronically steerable array,” in Proceedings of the IEEE Aerospace Conference, 2017/March, pp. 1–12.Google Scholar
Weickhmann, C., Nathrath, N., Gehring, R., Gaebler, A., Jost, M., and Jakoby, R., “A light-weight tunable liquid crystal phase shifter for an efficient phased array antenna,” in European Microwave Conference (EuMC), 2013, pp. 428–431.Google Scholar
Sahbani, F., Tentillier, N., Gharsallah, A., Gharbi, A., and Legrand, C., “New tunable coplanar microwave phase shifter with nematic crystal liquid,” in 2008 3rd International Design and Test Workshop, December 20–22 2008, pp. 78–81. DOI: http://10.1109/IDT.2008.4802470Google Scholar
Bui, V. B., Inoue, Y., and Moritake, H., “NRD waveguide-type terahertz phase shifter using nematic liquid crystal,” Japanese Journal of Applied Physics, vol. 58, no. 2, pp. 022001022001, 2019. DOI: http://10.7567/1347–4065/aaf282CrossRefGoogle Scholar
Bulja, S. and Mirshekar-Syahkal, D., “Meander line millimetre-wave liquid crystal based phase shifter,” Electronics Letters, vol. 46, no. 11, pp. 769769, 2010. DOI: http://10.1049/el.2010.3513Google Scholar
Jost, M., Reese, R., Nickel, M., Maune, H., and Jakoby, R., “Fully dielectric interference-based SPDT with liquid crystal phase shifters,” IET Microwaves, Antennas & Propagation, vol. 12, no. 6, pp. 850857, 2018. DOI: http://10.1049/iet-map.2017.0695Google Scholar
Jost, M. et al., “Tunable dielectric delay line phase shifter based on liquid crystal technology for a SPDT in a radiometer calibration scheme at 100 GHz,” in IEEE MTT-S International Microwave Symposium, 2016, pp. 1–4.Google Scholar
Reese, R., Jost, M., Nickel, M., Polat, E., Jakoby, R., and Maune, H., “A fully dielectric lightweight antenna array using a multimode interference power divider at W-band,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 32363239, 2017. DOI: http://10.1109/LAWP.2017.2771385CrossRefGoogle Scholar
Reese, R., Polat, E., Jost, M., Nickel, M., Jakoby, R., and Maune, H., “Liquid crystal based phase shifter in a parallel-plate dielectric waveguide topology at V-band,” in European Microwave Integrated Circuit Conference (EuMIC), 2017, pp. 353–356.Google Scholar
Gaebler, A., Goelden, F., Mueller, S., and Jakoby, R., “Modeling of electrically tunable transmission line phase shifter based on liquid crystal,” in 2008 IEEE Antennas and Propagation Society International Symposium, 2008/July: IEEE.Google Scholar
Gaebler, A., Goelden, F., Mueller, S., and Jakoby, R., “Efficiency considerations of tuneable liquid crystal microwave devices,” in German Microwave Conference, 2008, pp. 1–4.Google Scholar
Karabey, O. H., Saavedra, B. G., Fritzsch, C., Strunck, S., Gaebler, A., and Jakoby, R., “Methods for improving the tuning efficiency of liquid crystal based tunable phase shifters,” in European Microwave Integrated Circuit Conference (EuMIC), 2011, pp. 494–497.Google Scholar
Gaebler, A., Goelden, F., Mueller, S., and Jakoby, R., “Multiphysics simulations for tunability efficiency evaluation of liquid crystal based RF,” Frequenz, vol. 62, 2008, pp. 240–240. DOI: http://10.1515/FREQ.2008.62.9-10.240Google Scholar
Wen, C. P., “Coplanar waveguide, a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” in 1969 G-MTT International Microwave Symposium, pp. 110–115, 1969. DOI: http://10.1109/GMTT.1969.1122668Google Scholar
Yeh, C. and Shimabukuro, F., The Essence of Dielectric Waveguides. New York: Springer Science+Business Media, 2008.CrossRefGoogle Scholar
Weidenbach, M. et al., “3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz,” Optics Express, vol. 24, no. 25, pp. 2896828976, 2016. DOI: http://10.1364/OE.24.028968Google Scholar
Friedsam, G. L. and Biebl, E. M., “Precision free-space measurements of complex permittivity of polymers in the W-band,” in IEEE MTT-S International Microwave Symposium, 1997, vol. 3, pp. 13511354.Google Scholar
Krupka, J., “Measurements of the complex permittivity of low loss polymers at frequency range from 5 GHz to 50 GHz,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 6, pp. 464466, 2016. DOI: http://10.1109/LMWC.2016.2562640Google Scholar
Marcatili, E. A. J., “Dielectric rectangular waveguide and directional coupler for integrated optics,” The Bell System Technical Journal, vol. 48, no. 7, pp. 20712102, 1969.Google Scholar
Reese, R., Jost, M., Maune, H., and Jakoby, R., “Design of a continuously tunable W-band phase shifter in dielectric waveguide topology,” in IEEE MTT-S International Microwave Symposium, 2017, pp. 180–183.Google Scholar
Kwan, G. K. C. and Das, N. K., “Excitation of a parallel-plate dielectric waveguide using a coaxial probe-basic characteristics and experiments,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 6, pp. 16091620, 2002. DOI: http://10.1109/TMTT.2002.1006423Google Scholar
Fritzsch, C. et al., “Continuously tunable W-band phase shifter based on liquid crystals and MEMS technology,” in European Microwave Integrated Circuit Conference (EuMIC), 2011, pp. 522–525.Google Scholar
Fritzsch, C., Flüssigkristallbasierte elektronisch steuerbare Gruppenantennen Technologie, Konzepte und Komponenten. PhD thesis, Technische Universität Darmstadt, 2015.Google Scholar
Franc, A., Podevin, F., Cagnon, L., Ferrari, P., Serrano, A., and Rehder, G., “Metallic nanowire filled membrane for slow wave microstrip transmission lines,” in 2012 International Semiconductor Conference Dresden-Grenoble (ISCDG), pp. 191–194, 2012. DOI: http://10.1109/ISCDG.2012.6360022Google Scholar
Serrano, A. L. C. et al., “Modeling and characterization of slow-wave microstrip lines on metallic-nanowire-filled-membrane substrate,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 32493254, 2014. DOI: http://10.1109/TMTT.2014.2366108Google Scholar
Masuda, H. and Fukuda, K., “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, vol. 268, no. 5216, pp. 14661466, 1995. DOI: http://10.1126/science.268.5216.1466Google Scholar
Masuda, H., Hasegwa, F., and Ono, S., “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution,” Journal of The Electrochemical Society, vol. 144, no. 5, pp. L127L130, 1997. DOI: http://10.1149/1.1837634Google Scholar
Masuda, H., Yada, K., and Osaka, A., “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Japanese Journal of Applied Physics, vol. 37, no. Part 2, No. 11A, pp. L1340L1342, 1998. DOI: http://10.1143/jjap.37.l1340Google Scholar
Li, A. P., Müller, F., Birner, A., Nielsch, K., and Gösele, U., “Hexagonal pore arrays with a 50–-420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics, vol. 84, no. 11, pp. 60236026, 1998. DOI: http://10.1063/1.368911Google Scholar
Ellinger, F., Jackel, H., and Bachtold, W., “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 11351140, 2003. DOI: http://10.1109/TMTT.2003.809670Google Scholar
Venter, J. J. P., Stander, T., and Ferrari, P., “X-Band reflection-type phase shifters using coupled-line couplers on single-layer RF PCB,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 807809, 2018. DOI: http://10.1109/LMWC.2018.2853562Google Scholar
Hong-Teuk, K. et al., “V-band 2-b and 4-b low-loss and low-voltage distributed MEMS digital phase shifter using metal-air-metal capacitors,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 12, pp. 29182923, 2002. DOI: http://10.1109/TMTT.2002.805285Google Scholar
Pillans, B., Coryell, L., Malczewski, A., Moody, C., Morris, F., and Brown, A., “Advances in RF MEMS phase shifters from 15 GHz to 35 GHz,” in IEEE MTT-S International Microwave Symposium, 2012, pp. 1–3.Google Scholar
Sazegar, M. et al., “Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 12651273, 2011. DOI: http://10.1109/TMTT.2010.2103092Google Scholar
Velu, G. et al., “A 360°BST phase shifter with moderate bias voltage at 30 GHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 2, pp. 438444, 2007. DOI: http://10.1109/TMTT.2006.889319Google Scholar
Bernigaud, J. F. et al., “Liquid crystal tunable filter based on DBR topology,” in European Microwave Conference (EuMC), 2006/September 2006: IEEE.CrossRefGoogle Scholar
Gobel, T., Meissner, P., Gaebler, A., Koeberle, M., Mueller, S., and Jakoby, R., “Dual-frequency switching liquid crystal based tunable THz filter,” in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, June 2–4, 2009 pp. 1–2. DOI: http://10.1364/CLEO.2009.CThFF4.Google Scholar
Goelden, F., Gaebler, A., Karabey, O., Goebel, M., Manabe, A., and Jakoby, R., “Tunable band-pass filter based on liquid crystal,” in German Microwave Conference Digest of Papers, 2010/March, pp. 98–101.Google Scholar
Yazdanpanahi, M. and Mirshekar-Syahkal, D., “Millimeter-wave liquid-crystal-based tunable bandpass filter,” in 2012 IEEE Radio and Wireless Symposium, 2012/January: IEEE.Google Scholar
Yaghmaee, P., Fumeaux, C., Bates, B., Manabe, A., Karabey, O. H., and Jakoby, R., “Frequency tunable S-band resonator using nematic liquid crystal,” Electronics Letters, vol. 48, no. 13, pp. 798800, 2012. DOI: http://10.1049/el.2012.1366Google Scholar
Yaghmaee, P., Withayachumnankul, W., Horestani, A. K., Ebrahimi, A., Bates, B., and Fumeaux, C., “Tunable electric-LC resonators using liquid crystal,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013/July, pp. 382–383.CrossRefGoogle Scholar
Novin, S. N., Jarchi, S., and Yaghmaee, P., “Tunable frequency selective surface based on IDC-loaded electric-LC resonator incorporated with liquid crystal,” in Proceedings of the Conference on Microwave Techniques (COMITE), 2017/April, pp. 1–4.CrossRefGoogle Scholar
Torrecilla, J., Marcos, C., Urruchi, V., and Sánchez-Pena, J. M., “Tunable dual-mode bandpass filter based on liquid crystal technology,” in European Microwave Conference (EuMC), 2013/October, pp. 806–809.Google Scholar
Urruchi, V., Marcos, C., Torrecilla, J., Sánchez-Pena, J. M., and Garbat, K., “Note: Tunable notch filter based on liquid crystal technology for microwave applications,” Review of Scientific Instruments, vol. 84, no. 2, p. 026102, 2013/02/01 2013. DOI: http://10.1063/1.4790555Google Scholar
Prasetiadi, A. E., “Tunable substrate integrated waveguide bandpass filter and amplitude tuner based on microwave liquid crystal technology,” PhD thesis, Technische Universität Darmstadt, 2017.Google Scholar
Prasetiadi, A. E. et al., “Continuously tunable substrate integrated waveguide bandpass filter in liquid crystal technology with magnetic biasing,” Electronics Letters, vol. 51, no. 20, pp. 15841585, 2015. DOI: http://10.1049/el.2015.2494Google Scholar
Franke, T., Gaebler, A., Prasetiadi, A. E., and Jakoby, R., “Tunable Ka-band waveguide resonators and a small band band-pass filter based on liquid crystals,” in European Microwave Conference (EuMC), 2014, pp. 339–342.Google Scholar
Polat, E. et al., “Tunable liquid crystal filter in nonradiative dielectric waveguide technology at 60 GHz,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 1, pp. 4446, 2019. DOI: http://10.1109/LMWC.2018.2884152Google Scholar
Chen, X. and Wu, K., “Substrate integrated waveguide filter: Basic design rules and fundamental structure features,” IEEE Microwave Magazine, vol. 15, no. 5, pp. 108116, 2014. DOI: http://10.1109/MMM.2014.2321263Google Scholar
Matthaei, G. L., Young, L., and Jones, E. M. T., Microwave Filter, Impedance Matching Networks and Coupling Structures. Norwood, MA: Artech House, 1963.Google Scholar
Hong, J.-S., Lancaster, M. J., and Hong, J. S. L. M. J., Microstrip Filters for RF/Microwave Applications. Hoboken, NJ: John Wiley & Sons, 2001.Google Scholar
Yoneyama, T. and Nishida, S., “Nonradiative dielectric waveguide for millimeter-wave integrated circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 29, no. 11, pp. 11881192, 1981. DOI: http://10.1109/TMTT.1981.1130529Google Scholar
Yi-Chi, S., “Design of waveguide E-plane filters with all-metal inserts,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 7, pp. 695704, 1984. DOI: http://10.1109/TMTT.1984.1132756Google Scholar
Psychogiou, D., Peroulis, D., Li, Y., and Hafner, C., “V-band bandpass filter with continuously variable centre frequency,” Antennas Propagation IET Microwaves, vol. 7, no. 8, pp. 701707, 2013. DOI: http://10.1049/iet-map.2012.0722Google Scholar
Sammoura, F. and Lin, L., “Micromachined W-band polymeric tunable iris filter,” Microsystem Technologies, vol. 17, no. 3, pp. 411416, 2011. DOI: http://10.1007/s00542–010–1184–8Google Scholar
Yang, Z., Psychogiou, D., and Peroulis, D., “Design and optimization of tunable silicon-integrated evanescent-mode bandpass filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 4, pp. 17901803, 2018. DOI: http://10.1109/TMTT.2018.2799575Google Scholar
Jiang, H., Lacroix, B., Choi, K., Wang, Y., Hunt, A. T., and Papapolymerou, J., “Ka- and U-band tunable bandpass filters using ferroelectric capacitors,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 30683075, 2011. DOI: http://10.1109/tmtt.2011.2170088Google Scholar
Courreges, S. et al., “A Ka-band electronically tunable ferroelectric filter,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 6, pp. 356358, 2009. DOI: http://10.1109/lmwc.2009.2020012Google Scholar
Sigman, J., Nordquist, C. D., Clem, P. G., Kraus, G. M., and Finnegan, P. S., “Voltage-controlled Ku-band and X-band tunable combline filters using barium-strontium-titanate,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 593595, 2008. DOI: http://10.1109/LMWC.2008.2002453Google Scholar
e. Economou, E. et al., “Electrically tunable open-stub bandpass filters based on nematic liquid crystals,” Physical Review Applied, vol. 8, no. 6, 2017. DOI: http://10.1103/physrevapplied.8.064012Google Scholar
Martin, N., Laurent, P., Person, C., Gelin, P., and Huret, F., “Patch antenna adjustable in frequency using liquid crystal,” in European Microwave Conference (EuMC), 2003/October, pp. 699–702.Google Scholar
Martin, N., Laurent, P., Person, C., Gelin, P., and Huret, F., “Size reduction of a liquid crystal-based, frequency-adjustable patch antenna,” in European Microwave Conference (EuMC), 2004/October, vol. 2, pp. 825828.Google Scholar
Liu, L. and Langley, R. J., “Liquid crystal tunable microstrip patch antenna,” Electronics Letters, vol. 44, no. 20, pp. 11791180, 2008.Google Scholar
Christou, M. A., Papanicolaou, N. C., and Polycarpou, A. C., “A nematic liquid crystal tunable patch antenna,” in European Conference on Antennas and Propagation (EUCAP), 2014: IEEE.Google Scholar
Papanicolaou, N. C., Christou, M. A., and Polycarpou, A. C., “Frequency-agile microstrip patch antenna on a biased liquid crystal substrate,” Electronics Letters, vol. 51, no. 3, pp. 202204, 2015. DOI: http://10.1049/el.2014.3856Google Scholar
Fritzsch, C., Bildik, S., and Jakoby, R., “Ka-band frequency tunable patch antenna,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 2012/July: IEEE.Google Scholar
Zhao, Y., Huang, C., Qing, A., and Luo, X., “A frequency and pattern reconfigurable antenna array based on liquid crystal technology,” IEEE Photonics Journal, vol. 9, no. 3, pp. 17, 2017. DOI: http://10.1109/JPHOT.2017.2700042Google Scholar
Strunck, S., Karabey, O. H., Gaebler, A., and Jakoby, R., “Reconfigurable waveguide polariser based on liquid crystal for continuous tuning of linear polarisation,” Electronics Letters, vol. 48, no. 8, pp. 441443, 2012. DOI: http://10.1049/el.2012.0259Google Scholar
Nickel, M. et al., “Liquid crystal based tunable reflection-Type Power Divider,” in European Microwave Conference (EuMC), 2018/September, pp. 45–48.Google Scholar
Doumanis, E. et al., “Electronically reconfigurable liquid crystal based mm-wave polarization converter,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 4, pp. 23022307, 2014. DOI: http://10.1109/tap.2014.2302844Google Scholar
Karabey, O. H., Bausch, S., Bildik, S., Strunck, S., Gaebler, A., and Jakoby, R., “Design and application of a liquid crystal varactor based tunable coupled line for polarization agile antennas,” in European Microwave Conference (EuMC), 2012, pp. 739–742.Google Scholar
Karabey, O. H., Bildik, S., Bausch, S., Strunck, S., Gaebler, A., and Jakoby, R., “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 1, pp. 7076, 2013. DOI: http://10.1109/tap.2012.2213232Google Scholar
Pan, C.-L., Lin, C.-J., Yang, C.-S., Wu, W.-T., and Pan, R.-P., “Liquid-crystal-based phase gratings and beam steerers for terahertz waves,” in Liquid Crystals: Recent Advancements in Fundamental and Device Technologies: InTech, 2018.Google Scholar
Reese, R. et al., “A millimeter wave beam steering lens antenna with reconfigurable aperture using liquid crystal,” IEEE Transactions on Antennas and Propagation, pp. 1–1, 2019. DOI: http://10.1109/TAP.2019.2918474.Google Scholar
Shi, H., Li, J., Zhu, S., Zhang, A., and Xu, Z., “Radiation pattern reconfigurable waveguide slot array antenna using liquid crystal,” International Journal of Antennas and Propagation, vol. 2018, pp. 19, 2018. DOI: http://10.1155/2018/2164065Google Scholar
Jost, M., Reese, R., Nickel, M., Schmidt, S., Maune, H., and Jakoby, R., “Interference based W-band single-pole double-throw with tunable liquid crystal based waveguide phase shifters,” in IEEE MTT-S International Microwave Symposium, 2017/June: IEEE.Google Scholar
Jost, M., Reese, R., Maune, H., and Jakoby, R., “In-plane hollow waveguide crossover based on dielectric insets for millimeter-wave applications,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), June 4–9, 2017, pp. 188–191. DOI: http://10.1109/MWSYM.2017.8059015Google Scholar
Marin, R., Mossinger, A., Freese, J., Manabe, A., and Jakoby, R., “Realization of 35 GHz steerable reflectarray using highly anisotropic liquid crystal,” in 2006 IEEE Antennas and Propagation Society International Symposium, 2006: IEEE.Google Scholar
Marin, R., Mossinger, A., Freese, J., Muller, S., and Jakoby, R., “Basic investigations of 35 GHz reflectarrays and tunable unit-cells for beamsteering applications,” in European Radar Conference (EURAD), 2005: IEEE.Google Scholar
Moessinger, A., Marin, R., Mueller, S., Freese, J., and Jakoby, R., “Electronically reconfigurable reflectarrays with nematic liquid crystals,” Electronics Letters, vol. 42, no. 16, pp. 899900, 2006. DOI: http://10.1049/el:20061541Google Scholar
Hu, W. et al., “Tunable liquid crystal reflectarray patch element,” Electronics Letters, vol. 42, no. 9, pp. 509509, 2006. DOI: http://10.1049/el:20060571Google Scholar
Hu, W. et al., “Liquid-crystal-based reflectarray antenna with electronically switchable monopulse patterns,” Electronics Letters, vol. 43, no. 14, pp. 744744, 2007. DOI: http://10.1049/el:20071098Google Scholar
Moessinger, A., Marin, R., Freese, J., Mueller, S., Manabe, A., and Jakoby, R., “Investigations on 77 GHz tunable reflectarray unit cells with liquid crystal,” in European Conference on Antennas and Propagation (EUCAP), 2006, pp. 1–4.Google Scholar
Marin, R., “Investigations on liquid crystal reconfigurable unit cells for mm-wave reflectarrays,” Fachgebiet Mikrowellentechnik, 2008.Google Scholar
Perez-Palomino, G., Encinar, J. A., Barba, M., and Carrasco, E., “Design and evaluation of multi-resonant unit cells based on liquid crystals for reconfigurable reflectarrays,” Antennas Propagation IET Microwaves, vol. 6, no. 3, pp. 348354, 2012. DOI: http://10.1049/iet-map.2011.0234Google Scholar
Perez-Palomino, G. et al., “Wideband unit-cell based on liquid crystals for reconfigurable reflectarray antennas in f-band,” in Proceedings of the IEEE International Symposium on Antennas and Propagation, 2012/July, pp. 1–2.Google Scholar
Perez-Palomino, G. et al., “Design and experimental validation of liquid crystal-based reconfigurable reflectarray elements with improved bandwidth in F-band,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 17041713, 2013. DOI: http://10.1109/TAP.2013.2242833Google Scholar
Gao, S. et al., “Tunable liquid crystal based phase shifter with a slot unit cell for reconfigurable reflectarrays in F-band,” Applied Sciences, vol. 8, no. 12, pp. 25282528, 2018. DOI: http://10.3390/app8122528Google Scholar
Hu, W. et al., “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 10, pp. 31123117, 2008. DOI: http://10.1109/tap.2008.929460Google Scholar
Hu, W. et al., “94 GHz dual-reflector antenna with reflectarray subreflector,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 30433050, 2009. DOI: http://10.1109/tap.2009.2029275Google Scholar
Bildik, S., Dieter, S., Fritzsch, C., Menzel, W., and Jakoby, R., “Reconfigurable folded reflectarray antenna based upon liquid crystal technology,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 122132, 2015. DOI: http://10.1109/tap.2014.2367491Google Scholar
Dieter, S., Charakterisierung und Optimierung von quasiplanaren Millimeterwellenantennen bezüglich Rekonfigurierbarkeit. Göttingen, Germany: Cuvillier Verlag, 2015.Google Scholar
Dieter, S., Moessinger, A., Mueller, S., Jakoby, R., and Menzel, W., “Characterization of reconfigurable LC-reflectarrays using near-field measurements,” in 2009 German Microwave Conference, 2009/March: IEEE.Google Scholar
Damm, C., Maasch, M., Gonzalo, R., and Jakoby, R., “Tunable composite right/left-handed leaky wave antenna based on a rectangular waveguide using liquid crystals,” in IEEE MTT-S International Microwave Symposium, 2010/May: IEEE.Google Scholar
Damm, C., Artificial Transmission Line Structures for Tunable Microwave Components and Microwave Sensors. Düren, Germany: Shaker Verlag, 2011.Google Scholar
Roig, M., “Tunable metamaterial leaky wave antenna based on Microwave Liquid Crystal Technology,” PhD thesis, Technische Universität Darmstadt, 2015.Google Scholar
Roig, M., Maasch, M., Damm, C., and Jakoby, R., “Dynamic beam steering properties of an electrically tuned liquid crystal based CRLH leaky wave antenna,” in Proceedings of the 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 2014/August, pp. 253–255.Google Scholar
Roig, M., Maasch, M., Damm, C., Karabey, O. H., and Jakoby, R., “Liquid crystal based tunable composite right/left-handed leaky-wave antenna for Ka-Band applications,” in European Microwave Conference (EuMC), 2013/October, pp. 759–762.Google Scholar
a. Roig, M., Maasch, M., Damm, C., and Jakoby, R., “Investigation and application of a liquid crystal loaded varactor in a voltage tunable CRLH leaky-wave antenna at Ka-band,” International Journal of Microwave and Wireless Technologies, vol. 7, no. 3–4, pp. 361367, 2015. DOI: http://10.1017/s1759078715000367Google Scholar
Che, B.-J., Meng, F.-Y., Lyu, Y.-L., and Wu, Q., “A novel liquid crystal based leaky wave antenna,” in IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP), 2016/July: IEEE.Google Scholar
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., and Schultz, S., “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, no. 18, pp. 41844187, 2000. DOI: http://10.1103/physrevlett.84.4184CrossRefGoogle ScholarPubMed
Shelby, R. A., “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 7779, 2001. DOI: http://10.1126/science.1058847Google Scholar
Deng, X., He, Z., Yuan, S., Shao, Z., and Liu, L., “W-band high bit passive phase shifter for automotive radar applications in BiCMOS,” in 2011 International Conference on Computational Problem-Solving (ICCP), October 21–23, 2011, pp. 115–119. DOI: http://10.1109/ICCPS.2011.6092220Google Scholar
Ozturk, E., Nemati, M. H., Kaynak, M., Tillack, B., and Tekin, I., “SiGe process integrated full-360° microelectromechanical systems-based active phase shifter for W-band automotive radar,” IET Microwaves, Antennas & Propagation, vol. 8, no. 11, pp. 835841, 2014. DOI: http://10.1049/iet-map.2013.0594Google Scholar
Reyaz, S., Samuelsson, C., Malmqvist, R., Kaynak, M., and Rydberg, A., “Millimeter-wave RF-MEMS SPDT switch networks in a SiGe BiCMOS process technology,” in 7th European Microwave Integrated Circuit Conference, October 29–30, 2012, pp. 691–694.Google Scholar
Scardelletti, M. C., Ponchak, G. E., and Varaljay, N. C., “MEMS, Ka-band single-pole double-throw (SPDT) switch for switched line phase shifters,” in IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), June 16–21, 2002, vol. 2, pp. 25 vol.2, DOI: http://10.1109/APS.2002.1016014Google Scholar
Somjit, N., Stemme, G., and Oberhammer, J., “Performance optimization of multi-stage MEMS W-band dielectric-block phase-shifters,” in 7th European Microwave Integrated Circuit Conference, October 29–30, 2012, pp. 433–436.Google Scholar
Zahr, A. H. et al., “A DC-30 GHz high performance packaged RF MEMS SPDT switch,” in 2015 European Microwave Conference (EuMC), September 7–10, 2015, pp. 1015–1017. DOI: http://10.1109/EuMC.2015.7345938Google Scholar
Koul, S. K. and Bhat, B., Microwave and Millimeter Wave Phase Shifters. Norwood, MA: Artech House, 1991.Google Scholar
Patton, C. E., “Hexagonal ferrite materials for phase shifter applications at millimeter wave frequencies,” IEEE Transactions on Magnetics, vol. 24, no. 3, pp. 20242028, 1988. DOI: http://10.1109/20.3395Google Scholar
Nafe, A. and Shamim, A., “An integrable SIW phase shifter in a partially magnetized ferrite LTCC package,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 7, pp. 22642274, 2015. DOI: http://10.1109/TMTT.2015.2436921Google Scholar
Wang, Z. et al., “Millimeter wave phase shifter based on ferromagnetic resonance in a hexagonal barium ferrite thin film,” Applied Physics Letters, vol. 97, no. 7, p. 072509, 2010/08/16 2010. DOI: http://10.1063/1.3481086Google Scholar
Choi, K., Courreges, S., Zhao, Z., Papapolymerou, J., and Hunt, A., “X-band and Ka-band tunable devices using low-loss BST ferroelectric capacitors,” in 18th IEEE International Symposium on the Applications of Ferroelectrics, August 23–27, 2009, pp. 1–6. DOI: http://10.1109/ISAF.2009.5307566Google Scholar
Kozyrev, A. B., Ivanov, A. V., Soldatenkov, O. I., Tumarkin, A. V., Razumov, S. V., and Aigunova, S. Y., “Ferroelectric (Ba,Sr)TiO3 thin-film 60-GHz phase shifter,” Technical Physics Letters, vol. 27, no. 12, pp. 10321034, December 1, 2001. DOI: http://10.1134/1.1432340Google Scholar
Gevorgian, S., Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements. New York: Springer Science & Business Media, 2009.Google Scholar
Nikfalazar, M. et al., “Fully printed tunable phase shifter for L/S-band phased array application,” in 2014 IEEE MTT-S International Microwave Symposium(IMS2014), June 1–6, 2014, pp. 1–4. DOI: http://10.1109/MWSYM.2014.6848295Google Scholar
Paolis, R. D., Coccetti, F., Payan, S., Maglione, M., and Guegan, G., “Characterization of ferroelectric BST MIM capacitors up to 65 GHz for a compact phase shifter at 60 GHz,” in 2014 44th European Microwave Conference, October 6–9, 2014, pp. 492–495. DOI: http://10.1109/EuMC.2014.6986478Google Scholar
Paolis, R. D., Payan, S., Maglione, M., Guegan, G., and Coccetti, F., “High-tunability and high-Q-factor integrated ferroelectric circuits up to millimeter waves,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 8, pp. 25702578, 2015. DOI: http://10.1109/TMTT.2015.2441073Google Scholar
Sazegar, M., Zheng, Y., Maune, H., Damm, C., Zhou, X., and Jakoby, R., “Compact tunable phase shifters on screen-printed BST for balanced phased arrays,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 33313337, 2011. DOI: http://10.1109/TMTT.2011.2171985.Google Scholar
Shi, S., Purden, J., Lin, J., and York, R. A., “A 24 GHz wafer scale electronically scanned antenna using BST phase shifters for collision avoidance systems,” in 2005 IEEE Antennas and Propagation Society International Symposium, July 3–8, 2005, vol. 1B, pp. 8487 vol. 1B. DOI: http://10.1109/APS.2005.1551489Google Scholar
Zhang, M., Liu, M., Ling, S., Chen, P., Zhu, X., and Yu, X., “K-band tunable phase shifter with microstrip line structure using BST technology,” in 2015 Asia-Pacific Microwave Conference (APMC), December 6–9, 2015, vol. 2, pp. 13. DOI: http://10.1109/APMC.2015.7413118Google Scholar
Jost, M. et al., “Liquid crystal based SPDT with adjustable power splitting ratio in LTCC technology,” in European Microwave Conference (EuMC), 2018/September: IEEE.Google Scholar
Jost, M. et al., “Electrically biased W-band phase shifter based on liquid crystal,” in 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 14–19, 2014, pp. 1–2. DOI: http://10.1109/IRMMW-THz.2014.6956435CrossRefGoogle Scholar
Weickhmann, C., Jost, M., Laemmle, D., and Jakoby, R., “Design and fabrication considerations for a 250 GHz liquid crystal phase shifter,” in 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 14–19, 2014, pp. 1–2. DOI: http://10.1109/IRMMW-THz.2014.6956330Google Scholar
Hoefle, M., Koeberle, M., Chen, M., Penirschke, A., and Jakoby, R., “Reconfigurable Vivaldi antenna array with integrated antipodal finline phase shifter with liquid crystal for W-Band applications,” in 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010/September: IEEE.Google Scholar
Hoefle, M., Koeberle, M., Penirschke, A., and Jakoby, R., “Improved millimeter wave Vivaldi antenna array element with high performance liquid crystals,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, 2011/October: IEEE.Google Scholar
Hoefle, M., Koeberle, M., Penirschke, A., and Jakoby, R., “Millimeterwave Vivaldi antenna with liquid crystal phase shifter for electronic beam steering,” presented at the 6th ESA Workshop on Millimetre-Wave Technology and Applications, 2011. http://tubiblio.ulb.tu-darmstadt.de/56414/Google Scholar
Koeberle, M., Hoefle, M., Mo, C., Penirschke, A., and Jakoby, R., “Electrically tunable liquid crystal phase shifter in antipodal finline technology for reconfigurable W-Band Vivaldi antenna array concepts,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), April 11–15, 2011, pp. 15361539.Google Scholar
Deo, P., Mirshekar-Syahkal, D., Seddon, L., Day, S. E., and Fernandez, F. A., “Liquid crystal based patch antenna array for 60 GHz applications,” in IEEE Radio and Wireless Symposium, 2013/January: IEEE.Google Scholar
Deo, P., Yazdanpanahi, M., and Mirshekar-Syahkal, D., “Effect of test device thickness on liquid crystal characterisation,” 2012 Asia Pacific Microwave Conference Proceedings, pp. 1280–1282, 2012. DOI: http://10.1109/APMC.2012.6421895Google Scholar
Deo, P., Mirshekar-Syahkal, D., Seddon, L., Day, S. E., and Fernández, F. A. b., “60 GHz liquid crystal phased array using reflection-type phase shifter,” in European Conference on Antennas and Propagation (EUCAP), 2013, pp. 927–929.Google Scholar
Ma, S. et al., “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microwaves, Antennas & Propagation, vol. 12, no. 7, pp. 11401146, 2018. DOI: http://10.1049/iet-map.2017.1070Google Scholar
Sanadgol, B., Holzwarth, S., and Kassner, J., “30 GHz liquid crystal phased array,” in 2009 Loughborough Antennas & Propagation Conference, 2009/November: IEEE.Google Scholar
Karabey, O. H. et al., “Liquid crystal based reconfigurable antenna arrays,” 2010/October. http://tubiblio.ulb.tu-darmstadt.de/56398/Google Scholar
Reese, R. et al., “A compact two-dimensional power divider for a dielectric rod antenna array based on multimode interference,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 39, no. 12, pp. 11851202, 2018. DOI: http://10.1007/s10762–018–0535–xGoogle Scholar
Tebbe, M., Hoehn, A., Nathrath, N., and Weickhmann, C., “Simulation of an electronically steerable horn antenna array with liquid crystal phase shifters,” in Proceedings of the IEEE Aerospace Conference, 2016/March, pp. 1–15.Google Scholar
Soldano, L. B. and Pennings, E. C. M., “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology, vol. 13, no. 4, pp. 615627, 1995. DOI: http://10.1109/50.372474Google Scholar
Liu, Y. et al., “Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal,” Review of Scientific Instruments, vol. 87, no. 7, pp. 074709074709, 2016.Google Scholar
Khoo, I. C., Werner, D. H., Liang, X., Diaz, A., and Weiner, B., “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Optics Letters, vol. 31, no. 17, pp. 25922592, 2006. DOI: http://10.1364/ol.31.002592Google Scholar
Werner, D. H., Kwon, D.-H., Khoo, I.-C., Kildishev, A. V., and Shalaev, V. M., “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Optics Express, vol. 15, no. 6, pp. 33423347, March 19, 2007. DOI: http://10.1364/OE.15.003342Google Scholar
Kwon, D.-H., Werner, D. H., Khoo, I.-C., Kildishev, A. V., and Shalaev, V. M., “Liquid crystal clad metamaterial with a tunable negative-zero-positive index of refraction,” in IEEE Antennas and Propagation Society International Symposium, 2007, pp. 2881–2884.Google Scholar
Xiande, W., Do-Hoon, K., Werner, D. H., and Iam-Choon, K., “Anisotropic liquid crystals for tunable optical negative-index metamaterials,” in IEEE Antennas and Propagation Society International Symposium, July 5–11, 2008, pp. 1–4. DOI: http://10.1109/APS.2008.4619734Google Scholar
Minovich, A. et al., “Liquid crystal based nonlinear fishnet metamaterials,” Applied Physics Letters, vol. 100, no. 12, pp. 121113121113, 2012. DOI: http://10.1063/1.3695165Google Scholar
Zografopoulos, D. C. and Beccherelli, R., “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Scientific Reports, vol. 5, no. 1, 2015. DOI: http://10.1038/srep13137Google Scholar
Chang, C.-L., Wang, W.-C., Lin, H.-R., Hsieh, F. Ju, Pun, Y.-B., and Chan, C.-H., “Tunable terahertz fishnet metamaterial,” Applied Physics Letters, vol. 102, no. 15, p. 151903, 2013/04/15 2013. DOI: http://10.1063/1.4801648Google Scholar
Maasch, M., Groudas, A., Karabey, O., Damm, C., and Jakoby, R., “Electrically tunable open split-ring resonators based on liquid crystal material,” 2012/January.Google Scholar
Maasch, M., Roig, M., Damm, C., and Jakoby, R., “Voltage-tunable artificial gradient-index lens based on a liquid crystal loaded fishnet metamaterial,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 15811584, 2014. DOI: http://10.1109/LAWP.2014.2345841Google Scholar
Maasch, M., Roig, M., Damm, C., and Jakoby, R., “Realization of a voltage tunable gradient-index fishnet loaded with liquid crystal,” in Proceedings of the 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 2014/August, pp. 196–198.Google Scholar
Hu, W. et al., “Liquid crystal tunable mm wave frequency selective surface,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 9, pp. 667669, 2007. DOI: http://10.1109/lmwc.2007.903455Google Scholar
Zhang, F. et al., “Magnetic control of negative permeability metamaterials based on liquid crystals,” in European Microwave Conference (EuMC), 2008/October, pp. 801–804.Google Scholar
Bossard, J. A. et al., “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 13081320, 2008. DOI: http://10.1109/tap.2008.922174Google Scholar
Fusco, V. F., Cahill, R., Hu, W., and Simms, S., “Ultra-thin tunable microwave absorber using liquid crystals,” Electronics Letters, vol. 44, no. 1, pp. 3737, 2008. DOI: http://10.1049/el:20082191Google Scholar
Seman, F. C., Cahill, R., and Fusco, V. F., “Electronically tunable liquid crystal based Salisbury screen microwave absorber,” in Proceedings of the Loughborough Antennas Propagation Conference, 2009/November, pp. 93–96.Google Scholar
Mohamad, S. and Cahill, R., “Spiral antenna with reconfigurable HIS using liquid crystals for monopulse radar application,” in Proceedings of the IEEE Conference on Antenna Measurements Applications (CAMA), 2017/December, pp. 55–58.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×