Published online by Cambridge University Press: 05 June 2012
In this chapter we embed the logistic regression model as well as the classical regression model into the framework of generalized linear models. Generalized linear models (GLMs), which have been proposed by Nelder and Wedderburn (1972), may be seen as a framework for handling several response distributions, some categorical and some continuous, in a unified way. Many of the binary response models considered in later chapters can be seen as generalized linear models, and the same holds for part of the count data models in Chapter 7.
The chapter may be read as a general introduction to generalized linear models; continuous response models are treated as well as categorical response models. Therefore, parts of the chapter can be skipped if the reader is interested in categorical data only. Basic concepts like the deviance are introduced in a general form, but specific forms that are needed in categorical data analysis will also be given in the chapters where the models are considered. Nevertheless, the GLM is useful as a background model for categorical data modeling, and since McCullagh and Nelder's (1983) book everybody working with regression models should be familiar with the basic concept.
Basic Structure
A generalized linear model is composed from several components. The random component specifies the distribution of the conditional response yi given xi, whereas the systematic component specifies the link between the expected response and the covariates.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.