Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T22:03:06.121Z Has data issue: false hasContentIssue false

3 - Mid-infrared (Thermal) Emission and Reflectance Spectroscopy

Laboratory Spectra of Geologic Materials

from Part I - Theory of Remote Compositional Analysis Techniques and Laboratory Measurements

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Middle infrared (~2000 to 200 cm–1 or 5 to 50 μm) data are extremely useful for compositional determination of geologic materials because this wavelength region hosts the fundamental (“Reststrahlen”) vibrational bands of most minerals. Analysis of remotely sensed data requires comparison to well-developed spectral libraries populated with a wide variety of mid-IR mineral spectra (and additional rock or meteorite spectra). Here we present the theory behind molecular vibrations of mineral structures and the simple harmonic oscillators that define them mathematically. We present dispersion theory that describes how energy travels through a crystal and how propagating energy is affected by the crystal lattice structure, specifically along the various crystal axes. The equipment required for these types of laboratory measurements (both emissivity and reflectivity) is presented as well as a discussion about how mid-IR data are affected by particle size and how related volume scattering affects spectral data. Finally, mid-IR emissivity spectra acquired in a dry, 1-atm environment are provided for 93 different minerals and meteorites. These spectra are available as ancillary data files.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 42 - 67
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, H.H. & Kerr, P.F. (1963) Infrared spectra, symmetry and structure relations of some carbonate minerals. American Mineralogist, 48, 839853.Google Scholar
Adler, H.H. & Kerr, P.F. (1965) Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals. American Mineralogist, 50, 132147.Google Scholar
Arnold, J.A., Glotch, T.D., & Plonka, A.M. (2014) Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented single-crystal reflectance spectra. American Mineralogist, 99, 19421955.Google Scholar
Aronson, J.R. & Elmslie, A.G. (1973) Spectral reflectance and emittance of particulate materials. 2: Application and results. Applied Optics, 12, 25732585.Google Scholar
Aronson, J.R., Emslie, A.G., & McLinden, H.G. (1966) Infrared spectra from particulate surfaces. Science, 152, 345346.Google Scholar
Ashley, J.W. (2011) Meteorites on Mars as Planetary Research Tools with Special Considerations for Martian Weathering Processes. PhD dissertation, Arizona State University.Google Scholar
Ashley, J.W. & Christensen, P.R. (2012) Thermal emission spectroscopy of unpowdered meteorites. 43rd Lunar Planet. Sci. Conf., Abstract #2519.Google Scholar
Baldridge, A.M. & Christensen, P.R. (2009) A laboratory technique for thermal emission measurement of hydrated minerals. Applied Spectroscopy, 63, 678688.Google Scholar
Baldridge, A.M., Hook, S.J., Grove, C.I., & Rivera, G. (2009) The ASTER spectral library version 2.0. Remote Sensing of the Environment, 13, 711715.Google Scholar
Bishop, J.L., Lane, M.D., Dyar, M.D., & Brown, A.J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 3554.Google Scholar
Bishop, J.L., Lane, M.D., Dyar, M.D., King, S.J., Brown, A.J., & Swayze, G. (2014a) Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite. American Mineralogist, 99, 21052115.Google Scholar
Bishop, J.L., Quinn, R., & Dyar, M.D. (2014b) Spectral and thermal properties of perchlorate salts and implications for Mars. American Mineralogist, 99, 15801592.CrossRefGoogle ScholarPubMed
Bishop, J.L., Murad, E., & Dyar, M.D. (2015) Akaganéite and schwertmannite: Spectral properties, structural models and geochemical implications of their possible presence on Mars. American Mineralogist, 100, 738746.Google Scholar
Bishop, J.L., King, S.J., Lane, M.D., et al. (2017) Spectral properties of anhydrous carbonates and nitrates. 48th Lunar Planet. Sci. Conf., Abstract #2362.Google Scholar
Born, M. & Wolf, E. (1980) Principles of Optics, 6th edn. Pergamon, Tarrytown, NY, 627633.Google Scholar
Böttcher, M.E., Gehlken, P.-L., Fernandez-Gonzalez, A., & Prieto, M. (1997) Characterization of synthetic BaCO3–SrCO3 (witherite-strontianite) solid-solutions by Fourier transform infrared spectroscopy. European Journal of Mineralogy, 9, 519528.Google Scholar
Che, C. & Glotch, T.D. (2012) The effect of high temperatures on the mid-to-far-infrared and near-infrared reflectance spectra of phyllosilicates and natural zeolites: Implications for martian exploration. Icarus, 218, 585601.CrossRefGoogle Scholar
Che, C., Glotch, T.D., Bish, D.L., Michalski, J.R., & Xu, W. (2011) Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003740.CrossRefGoogle Scholar
Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X. (2015) Applications of micro-Fourier Transform Infrared Spectroscopy (FTIR) in the geological sciences: A review. International Journal of Molecular Sciences, 16, 26227.Google Scholar
Chihara, H., Koike, C., Tsuchiyama, A., Tachibana, S., & Sakamoto, D. (2002) Compositional dependence of infrared absorption spectra of crystalline silicates. I. Mg-Fe pyroxenes. Astronomy & Astrophysics, 391, 267273.Google Scholar
Christensen, P.R. & Harrison, S.T. (1993) Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks. Journal of Geophysical Research, 98, 19,81919,834.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., et al. (2000a) A thermal emission spectral library of rock-forming minerals. Journal of Geophysical Research, 105, 97359739.Google Scholar
Christensen, P.R., Bandfield, J.L., Clark, R.N., et al. (2000b) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. Journal of Geophysical Research, 105, 96239642.Google Scholar
Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L., & Malin, M.C. (2001) Global mapping of martian hematite mineral deposits: Remnants of water-driven processes on early Mars. Journal of Geophysical Research, 106, 2387323885.CrossRefGoogle Scholar
Clark, R.N., Swayze, G.A., Wise, R., et al. (2007) USGS Digital Spectral Library splib06a: U.S. Geological Survey, Digital Data Series 231.Google Scholar
Cloutis, E.A. (2015) The University of Winnepeg’s Planetary Spectrophotometer Facility (aka HOSERLab): What’s new. 46th Lunar Planet. Sci. Conf., Abstract #1187.Google Scholar
Cloutis, E.A., Pranoti, M.A., & Mertzman, S.A. (2002) Spectral reflectance properties of zeolites and remote sensing implications. Journal of Geophysical Research, 107, E9, DOI:1029/2000JE001467.CrossRefGoogle Scholar
Coblentz, W.W. (1905) Investigations of infra-red spectra, 35. Carnegie Institution Publications, Washington, DC.Google Scholar
Coblentz, W.W. (1906) Investigations of infra-red spectra, 65. Carnegie Institution Publications, Washington, DC.Google Scholar
Coblentz, W.W. (1908) Investigations of infra-red spectra, 97. Carnegie Institution Publications, Washington, DC.Google Scholar
Conel, J.E. (1965) Infrared thermal emission from silicates. Jet Propulsion Laboratory Technical Memorandum 33–243.Google Scholar
Conel, J.E. (1969) Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74, 16141634.Google Scholar
Cooper, C.D. & Mustard, J.F. (1999) Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil. Icarus, 142, 557570.Google Scholar
Cooper, B.L., Salisbury, J.W., Killen, R.M., & Potter, A.E. (2002), Midinfrared spectral features of rocks and their powders. Journal of Geophysical Research, 107, 5017, 10.1029/2001JE001462.CrossRefGoogle Scholar
Crowley, J.K. & Hook, S.J. (1996) Mapping playa evaporate minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images. Journal of Geophysical Research, 101, 643660.CrossRefGoogle Scholar
Dominguez, G., McLeod, A.S., Gainsforth, Z., et al. (2014) Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nature Communications, 5, 5445.Google Scholar
Donaldson Hanna, K. & Sprague, A.L. (2009) Vesta and the HED meteorites: Mid-infrared modeling of minerals and their abundances. Meteoritics and Planetary Science, 44(11), 17551770.Google Scholar
Donaldson Hanna, K.L., Thomas, I.R., Bowles, N.E., et al. (2012) Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions. Journal of Geophysical Research, 117, E11004, DOI:10.1029/2012JE004184.Google Scholar
Donaldson Hanna, K.L., Greenhagen, B.T., Patterson, W.R. III, et al. (2017) Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon. Icarus, 283, 326–342.Google Scholar
Dyar, M.D., Glotch, T.D., Lane, M.D., et al. (2011) Spectroscopy of Yamato 984028. Polar Science, 4, 530549.Google Scholar
Edwards, C.S. & Christensen, P.R. (2013) Microscopic emission and reflectance thermal infrared spectroscopy: Instrumentation for quantitative in situ mineralogy of complex planetary surfaces, Applied Optics, 52, 22002217.Google Scholar
Estep-Barnes, P.A. (1977) Infrared spectroscopy. In Zussman, J. (ed.), Physical methods in determinative mineralogy, 2nd edn. Academic Press, New York, 529603.Google Scholar
Farmer, V.C. (1974) The infrared spectra of minerals. The Mineralogical Society, London.Google Scholar
Feely, K.C. & Christensen, P.R. (1999) Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks. Journal of Geophysical Research, 104, 24,19524,210.Google Scholar
Friedlander, L.R., Glotch, T.D., Bish, D.L., et al. (2015) Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa. Journal of Geophysical Research, 120, 888912.CrossRefGoogle Scholar
Frost, R.L., Kloprogge, T., Martens, W.N., & Williams, P. (2002) Vibrational spectroscopy of the basic manganese, ferric and ferrous phosphate minerals: Strunzite, ferristrunzite, and ferrostrunzite. Neues Jahrbuch für Mineralogie, Monatshefte, 11, 481496.CrossRefGoogle Scholar
Gadsden, J.A. (1975) Infrared spectra of minerals and related inorganic compounds. Butterworth & Co, London.Google Scholar
Glotch, T.D. & Rossman, G.R. (2009) Mid-infrared reflectance spectra and optical constants of six oxide/oxyhydroxide phases. Icarus, 204, 663671.Google Scholar
Glotch, T.D., Christensen, P.R., & Sharp, T.G. (2006) Fresnel modeling of hematite crystal surfaces and application to martian hematite spherules. Icarus, 181, 408418.Google Scholar
Glotch, T.D., Rossman, G.R., & Aharonson, O. (2007) Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals. Icarus, 192, 605622.Google Scholar
Goodrich, C.A., Kita, N.T., Yin, Q., et al. (2017) Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy. Geochimica et Cosmochimica Acta, 203, 381403.Google Scholar
Hamilton, V.E. (2000) Thermal infrared emission spectroscopy of the pyroxene mineral series. Journal of Geophysical Research, 105, 97019716.Google Scholar
Hamilton, V.E. (2010) Thermal infrared (vibrational) spectroscopy of Mg-Fe olivines: A review and applications to determining the composition of planetary surfaces. Chemie der Erde, 70, 733.Google Scholar
Hamilton, V.E. & Christensen, P.R. (2000) Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy. Journal of Geophysical Research, 105, 97179733.Google Scholar
Hamilton, V.E., Wyatt, M.B., McSween, H.Y. Jr., & Christensen, P.R. (2001) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy. 2. Application to martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer. Journal of Geophysical Research, 106(7), 1472214746.CrossRefGoogle Scholar
Hamilton, V.E., Christensen, P.R., McSween, H.Y. Jr., & Bandfield, J.L. (2003) Searching for the source regions of Martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars. Meteoritics and Planetary Science, 38(6), 871885.CrossRefGoogle Scholar
Hapke, B. (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge.Google Scholar
Helbert, J., Moroz, L.V., Maturilli, A., et al. (2007) A set of laboratory analogue materials for the MERTIS instrument on the ESA BepiColombo mission to Mercury. Advanced Space Research, 40, 272279.Google Scholar
Hellwege, K.H., Lesch, W., Plihal, M., & Schaack, G. (1970) Zwei-Phononen-Absorptionsspektren und Dispersion der Schwingungszweige in Kristallen der Kalkspatstruktur. Zeitschrift für Physik, 232, 6186.Google Scholar
Henderson, B.G. & Jakosky, B.M. (1997) Near-surface thermal gradients and mid-IR emission spectra: A new model including scattering and application to real data. Journal of Geophysical Research, 102, 65676580.CrossRefGoogle Scholar
Huminicki, D.M.C. & Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. In: Phosphates: Geochemical, geobiological, and materials importance (Kohn, M.J., Rakovan, J., & Hughes, J.M., eds.). Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, Washington, DC, 48, 123253.Google Scholar
Hunt, G.R. & Vincent, R.K. (1968) The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes. Journal of Geophysical Research, 73, 60396046.Google Scholar
Johnson, J.R., Hörz, F. & Staid, M.I. (2003) Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars. American Mineralogist, 88, 15751582.Google Scholar
Keller, L.P., Bajt, S., Baratta, G.A., et al. (2006) Infrared spectroscopy of comet 81P/Wild 2 samples returned by Stardust. Science, 314, 17281731.Google Scholar
Kereszturi, A., Gyollai, I., & Szabó, M. (2015) Case study of chondrule alteration with IR spectroscopy in NWA 2086 CV3 meteorite. Planetary and Space Science, 106, 122131.Google Scholar
King, P.L., Ramsey, M.S., McMillan, P.F., & Swayze, G.A. (2004) Laboratory Fourier Transform Infrared Spectroscopy methods for geologic samples. In: Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing (King, P.L., Ramsey, M.S., & Swayze, G.A., eds.). Mineralogical Association of Canada, Short Course 33, 57–91.Google Scholar
Klima, R.L. & Pieters, C.M. (2006) Near- and mid-infrared microspectroscopy of the Ronda peridotite. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002537.Google Scholar
Kodama, H. (1985) Infrared Spectra of Minerals: Reference Guide to Identification and Characterization of Minerals for The Study of Soils. Agriculture Canada, Ottawa.Google Scholar
Koike, C., Chihara, H., Tsuchiyama, A., Suto, H., Sogawa, H., & Okuda, H. (2003) Compositional dependence of infrared absorption spectra of crystalline silicate. II. Natural and synthetic olivines. Astronomy & Astrophysics, 399, 11011107.Google Scholar
Kokaly, R.F., Clark, R.N., Swayze, G.A., et al. (2017) USGS Spectral Library Version 7, USGS Data Series, Reston, VA.Google Scholar
Lane, M.D. (1999) Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite. Journal of Geophysical Research, 104, 1409914108.Google Scholar
Lane, M.D. (2007) Midinfrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, 118.Google Scholar
Lane, M.D. & Christensen, P.R. (1997) Thermal infrared emission spectroscopy of anhydrous carbonates. Journal of Geophysical Research, 102, 2558125592.CrossRefGoogle Scholar
Lane, M.D. & Christensen, P.R. (1998) Thermal infrared emission spectroscopy of salt minerals predicted for Mars. Icarus, 135, 528536.CrossRefGoogle Scholar
Lane, M.D., Morris, R.V., Mertzman, S.A., & Christensen, P.R. (2002) Evidence for platy hematite grains in Sinus Meridiani, Mars. Journal of Geophysical Research, 107(E12), 5126, DOI:10.1029/2001JE001832.Google Scholar
Lane, M.D., Glotch, T.D., Dyar, M.D., et al. (2011a) Midinfrared spectroscopy of synthetic olivines: Thermal emission, specular and diffuse reflectance, and attenuated total reflectance studies of forsterite to fayalite. Journal of Geophysical Research, 116, E08010, DOI:10.1029/2010JE003588.Google Scholar
Lane, M.D., Mertzman, S.A., Dyar, M.D., & Bishop, J.L. (2011b) Phosphate minerals measured in the visible-near infrared and thermal infrared: Spectra and XRD analyses. 42nd Lunar Planet. Sci. Conf., Abstract #1013.Google Scholar
Lane, M.D., Bishop, J.L., Dyar, M.D., et al. (2015) Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals. American Mineralogist, 100, 6682, DOI:10.2138/am-2015-4762.Google Scholar
Logan, L.M. & Hunt, G.R. (1970) Emission spectra of particulate silicates under simulated lunar conditions. Journal of Geophysical Research, 75, 65396548.Google Scholar
Logan, L.M., Hunt, G.R., Salisbury, J.W., & Balsamo, S.R. (1973) Compositional implications of Christiansen frequency maximums for infrared remote sensing applications. Journal of Geophysical Research, 78, 49835003.Google Scholar
Long, L.L., Querry, M.R., Bell, R.J., & Alexander, R.W. (1993) Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared. Infrared Physics, 34, 191201.Google Scholar
Lorentz, H.A. (1880) Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Annalen der Physik, 245, 641665.Google Scholar
Lorenz, L. (1881) Über die Refractionsconstante. Annalen der Physik, 247, 70103.Google Scholar
Lyon, R.J.P. (1964) Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils. II. Rough and powdered surfaces. NASA Contract Report, CR-100.Google Scholar
Lyon, R.J.P. (1965) Analysis of rocks by spectral infrared emission (8–25 µm). Economic Geology, 60, 715736.Google Scholar
Lyon, R.J.P. & Burns, E.A. (1963) Analysis of rocks and minerals by reflected infrared radiation. Economic Geology, 58, 274284.Google Scholar
Marino, M., Carati, A., & Galgani, L. (2007) Classical light dispersion theory in a regular lattice. Annals of Physics, 322, 799823.CrossRefGoogle Scholar
Maturilli, A., Helbert, J., Witzke, A., & Moroz, L. (2006) Emissivity measurements of analogue materials for the interpretation of data from PFS on Mars Express and MERTIS on Bepi-Colombo. Planetary and Space Science, 54(11), 10571064.Google Scholar
Maturilli, A., Helbert, J., & Moroz, L. (2008) The Berlin emissivity database (BED). Planetary and Space Science, 56(3–4), 420425. Spectral library now available at figshare.com/articles/BED_Emissivity_Spectral_Library/1536469.CrossRefGoogle Scholar
Maturilli, A., Helbert, J., Ferrari, S., Davidsson, B., & D’Amore, M. (2016) Characterization of asteroid analogues by means of emission and reflectance spectroscopy in the 1- to 100-m spectral range. Earth Planets and Space, 68(1), article ID 113, 111.Google Scholar
Michalski, J.R., Kraft, M.D., Diedrich, T., Sharp, T.G., & Christensen, P.R. (2003) Thermal emission spectroscopy of the silica polymorphs and considerations for remote sensing of Mars. Geophysical Research Letters, 30, DOI:10.1029/2003GL018354.Google Scholar
Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B., & Christensen, P.R. (2006) Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data. Journal of Geophysical Research, 111 (E3), DOI:10.1029/2005JE002438.Google Scholar
Milam, K.A., McSween, H.Y. Jr., & Christensen, P.R. (2007) Plagioclase compositions derived from thermal emission spectra of compositionally complex mixtures: Implications for martian feldspar mineralogy. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002880.Google Scholar
Milosevic, M. (2012) Internal Reflection and ATR Spectroscopy. In: Chemical analysis: A series of monographs on analytical chemistry and its applications (Mark F. Vitha, Series Editor). John Wiley & Sons, New York.Google Scholar
Moenke, H. (1962) Mineralspektren I: Die Ultrarotabsorption der Häufigsten und Wirtschaftlich Wichtigsten Halogenid-, Oxyd-, Hydroxyd-, Carbonat-, Nitrat-, Borat-, Sulfat-, Chromat-, Wolframat-, Molybdat-, Phosphat-, Arsenat-, Vanadat- und Silikatmineralien im Spektralbereich 400–4000 cm–1. Akademie Verlag, Berlin.Google Scholar
Moenke, H. (1966) Mineralspektren II: Die Ultrarotabsorption Häufiger und Paragenetisch oder Wirtschaftlich Wichtiger Carbonate-, Borat-, Sulfat-, Chromat-, Phosphat-, Arsenat-, und Vanadat- und Silikatmineralien im Spektralbereich 400–4000 cm–1 (25–2.5 microns). Akademie Verlag, Berlin.Google Scholar
Moersch, J.E. & Christensen, P.R. (1995) Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra. Journal of Geophysical Research, 100, 74657477.Google Scholar
Morlok, A., Bowey, J., Köhler, M., & Grady, M.M. (2006) FTIR 2–16 micron spectroscopy of micron-sized olivines from primitive meteorites. Meteoritics and Planetary Science, 41, 773784.Google Scholar
Mozgawa, W., Krol, M., & Barczyk, K. (2011) FT-IR studies of zeolites from different structural groups. Chemik, 65, 667674.Google Scholar
Mustard, J.F. & Hays, J.E. (1997) Effects of hyperfine particles on reflectance spectra from 0.3 to 25 µm. Icarus, 125, 145163.Google Scholar
Onomichi, M., Kudo, K., & Arai, T. (1971) Reflection spectra of calcite in far-infrared region. Journal of the Physical Society of Japan, 31, 1837.Google Scholar
Palomba, E., Rotundi, A., & Colangeli, L. (2006) Infrared micro-spectroscopy of the martian meteorite Zagami: Extraction of individual mineral phase spectra. Icarus, 182, 6879.Google Scholar
Pieters, C.M. & Hiroi, T. (2004) RELAB (Reflectance Experiment Laboratory): A NASA multiuser spectroscopy facility. 35th Lunar Planet. Sci. Conf., Abstract #1720.Google Scholar
Pieters, C.M., Klima, R.L., Hiroi, T., et al. (2008) Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine. Journal of Geophysical Research, 113, E06004, DOI:10.1029/2007JE002939.Google Scholar
Pitman, K.M., Dijkstra, C., Hofmeister, A.M., & Speck, A.K. (2010) Infrared laboratory absorbance spectra of olivine: Using classical dispersion analysis to extract peak parameters. Mon. Royal Astronomical Society, 406, 460481.Google Scholar
Pitman, K.M., Noe Dobrea, E.Z., Jamieson, C.S., Dalton III, J.B., Abbey, W.J., & Joseph, E.C.S. (2014) Reflectance spectroscopy and optical functions for hydrated Fe-sulfates. American Mineralogist, 99, 15931603.Google Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.Google Scholar
Rogers, A.D. & Nekvasil, H. (2015) Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophysical Research Letters, 42, 26192626.Google Scholar
Ross, S.D. (1974a) Sulphates and other oxy-anions of Group VI. In: The Infrared Spectra of Minerals (Farmer, V.C., ed.). The Mineralogical Society, London, 423444.Google Scholar
Ross, S.D. (1974b) Phosphates and other oxyanions of Group V. In: The Infrared Spectra of Minerals (Farmer, V.C., ed.). The Mineralogical Society, London, 383422.Google Scholar
Ruff, S.W. (2004) Spectral evidence for zeolite in the dust on Mars. Icarus, 168, 131143.Google Scholar
Ruff, S.W. & Christensen, P.R. (2007) Basaltic andesite, altered basalt, and a TES-based search for smectite clay minerals on Mars. Geophysical Research Letters, 34, DOI:10.1029/2007GL029602.Google Scholar
Ruff, S.W., Christensen, P.R., Barbera, P.W., & Anderson, D.L. (1997) Quantitative thermal emission spectroscopy of minerals: A technique for measurement and calibration. Journal of Geophysical Research, 102, 1489914913.Google Scholar
Salisbury, F.B. & D’Aria, D.M. (1992) Emissivity of terrestrial materials in the 8–14 µm atmospheric window. Remote Sensing Environment, 42, 83106.Google Scholar
Salisbury, J.W. & Eastes, J.W. (1985) The effect of particle size and porosity on spectral contrast in the mid-infrared. Icarus, 64, 586588.Google Scholar
Salisbury, J.W. & Wald, A. (1992) The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus, 96, 121128.Google Scholar
Salisbury, J.W. & Walter, L.S. (1989) Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. Journal of Geophysical Research, 94, 91929202.Google Scholar
Salisbury, J.W., Walter, L.S., & D’Aria, D. (1988) Mid-infrared (2.5 to 13.5 µm) spectra of igneous rocks. USGS Open File Report 88–686.Google Scholar
Salisbury, J.W., D’Aria, D.M., & Jarosewich, E. (1991a) Midinfrared (2.5–13.5 µm) reflectance spectra of powdered stony meteorites. Icarus, 92, 280297.CrossRefGoogle Scholar
Salisbury, J.W., Walter, L.S., Vergo, N., & D’Aria, D.M. (1991b) Infrared (2.1–25 µm) spectra of minerals. Johns Hopkins University Press, Baltimore, MD.Google Scholar
Salisbury, J.W., Wald, A., & D’Aria, D.M. (1994) Thermal-infrared remote sensing and Kirchhoff’s law 1. Laboratory measurements. Journal of Geophysical Research, 99, DOI:10.1029/93JB03600.Google Scholar
Spitzer, W.G. & Kleinman, D.A. (1961) Infrared lattice bands of quartz. Physical Review, 121, 13241335.Google Scholar
Stutman, J.M., Termine, J.D., & Posner, A.S. (1965) Vibrational spectra and the structure of the phosphate ion in some calcium phosphates. Transactions of the New York Academy of Sciences, 27, 669675, DOI:10.1111/j.2164-0947.Google Scholar
Thomas, I.R., Greenhagen, B.T., Bowles, N.E., Donaldson Hanna, K.L., Temple, J., & Calcutt, S.B. (2012) A new experimental setup for making thermal emission measurements in a simulated lunar environment. Review of Scientific Instruments, 83, 124502.Google Scholar
Vernazza, P., Delbo, M., King, P.L., et al. (2012) High surface porosity as the origin of emissivity features in asteroid spectra. Icarus, 221, 11621172.Google Scholar
Vernazza, P., Castillo-Rogez, J., Beck, P., et al. (2017) Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. The Astronomical Journal, 153, 72.Google Scholar
Wald, A.E. & Salisbury, J.W. (1995) Thermal infrared directional emissivity of powdered quartz. Journal of Geophysical Research, 100, 2466524675.Google Scholar
Weinger, B.A., Reffner, J.A., & DeForest, P.R. (2009) A novel approach to the examination of soil evidence: Mineral identification using infrared microprobe analysis. Journal of Forensic Sciences, 54, 851856.Google Scholar
Weir, C.E. & Lippincott, E.R. (1961) Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. Journal of Research of the National Bureau of Standards A: Physics and Chemistry, 65A, 173183.Google Scholar
Wenrich, M.L. & Christensen, P.R. (1996) Optical constants of minerals derived from emission spectroscopy: Application to quartz. Journal of Geophysical Research, 101, 1592115931.Google Scholar
Wyatt, M.B., Hamilton, V.E., McSween, H.Y. Jr., Christensen, P.R., & Taylor, L.A. (2001) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy, 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 14,71114,732.Google Scholar
Yesiltas, M., Sedlmair, J., & Peale, R.E. (2017) Synchrotron-based three-dimensional Fourier-transform infrared spectro-microtomography of Murchison meteorite grain. Applied Spectroscopy, 71(6), 11981208.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×