Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T01:51:27.026Z Has data issue: false hasContentIssue false

15 - Thermal Infrared Spectral Modeling

from Part III - Analysis Methods

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Spectral modeling techniques have been developed for the analysis of planetary surfaces using large thermal infrared (TIR) spacecraft datasets. These techniques can be applied to three main spectral analysis problems: (1) correction for atmospheric effects for the recovery of surface emissivity; (2) isolation and separation of surface spectral endmembers for the characterization of surface mineralogy; and (3) determination of surface anisothermality for the retrieval of surface physical properties and correction for thermal emission in near-infrared spectral data. These modeling techniques have been extensively applied to martian and lunar spacecraft datasets, forming a basis for the retrieval of surface physical and compositional properties.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 324 - 336
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldridge, A.M., Farmer, J.D., & Moersch, J.E. (2004) Mars remote-sensing analog studies in the Badwater Basin, Death Valley, California. Journal of Geophysical Research, 109, E12006, 118.CrossRefGoogle Scholar
Bandfield, J.L. (2008) High‐silica deposits of an aqueous origin in western Hellas Basin, Mars. Geophysical Research Letters, 35, DOI:10.1029/2008GL033807.CrossRefGoogle Scholar
Bandfield, J.L. (2009) Effects of surface roughness and graybody emissivity on martian thermal infrared spectra. Icarus, 202, 414428.CrossRefGoogle Scholar
Bandfield, J.L. & Smith, M.D. (2003) Multiple emission angle surface-atmosphere separations of thermal emission spectrometer data. Icarus, 161, 4765.CrossRefGoogle Scholar
Bandfield, J.L., Hamilton, V.E., & Christensen, P.R. (2000) A global view of martian surface compositions from MGS-TES. Science, 287, 16261630.CrossRefGoogle Scholar
Bandfield, J.L., Edgett, K.S., & Christensen, P.R. (2002) Spectroscopic study of the Moses Lake dune field, Washington: Determination of compositional distributions and source lithologies. Journal of Geophysical Research, 107, DOI:10.1029/2000JE001469.CrossRefGoogle Scholar
Bandfield, J.L., Glotch, T.D., & Christensen, P.R. (2003) Spectroscopic identification of carbonate minerals in the martian dust. Science, 301, 10841087.CrossRefGoogle ScholarPubMed
Bandfield, J.L., Rogers, D., Smith, M.D., & Christensen, P.R. (2004) Atmospheric correction and surface spectral unit mapping using Thermal Emission Imaging System data. Journal of Geophysical Research, 109, DOI:10.1029/2004JE002289.CrossRefGoogle Scholar
Bandfield, J.L., Ghent, R.R., Vasavada, A.R., Paige, D.A., Lawrence, S.J., & Robinson, M.S. (2011) Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. Journal of Geophysical Research, 116, DOI:10.1029/2011JE003866.CrossRefGoogle Scholar
Bandfield, J.L., Hayne, P.O., Williams, J.-P., Greenhagen, B.T., & Paige, D.A. (2015) Lunar surface roughness derived from LRO Diviner Radiometer observations. Icarus, 248, 357372.CrossRefGoogle Scholar
Christensen, P.R. (1986) The spatial distribution of rocks on Mars. Icarus, 68, 217238.CrossRefGoogle Scholar
Christensen, P.R., Bandfield, J.L., Clark, R.N., et al. (2000) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. Journal of Geophysical Research, 105, 96239642.CrossRefGoogle Scholar
Christensen, P.R., Ruff, S.W., Fergason, R.L., et al. (2004) Initial results from the Mini-TES Experiment in Gusev crater from the Spirit rover. Science, 305, 837842.CrossRefGoogle ScholarPubMed
Feely, K.C. & Christensen, P.R. (1999) Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks. Journal of Geophysical Research, 104, 24,19524,210.CrossRefGoogle Scholar
Geladi, P. & Kowalski, B.R. (1986) Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 117.CrossRefGoogle Scholar
Geminale, A., Grassi, D., Altieri, F., et al. (2015) Removal of atmospheric features in near infrared spectra by means of principal component analysis and target transformation on Mars: I. Method. Icarus, 253, 5165.CrossRefGoogle Scholar
Ghent, R.R., Hayne, P.O., Bandfield, J.L., et al. (2014) Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42, 10591062.CrossRefGoogle Scholar
Gillespie, A. (1992) Spectral mixture analysis of multispectral thermal infrared images. Remote Sensing of Environment, 42, 137145.CrossRefGoogle Scholar
Glotch, T.D. & Bandfield, J.L. (2006) Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end‐members at the Meridiani Planum landing site. Journal of Geophysical Research, 111, E12S06, 1507–1509.CrossRefGoogle Scholar
Glotch, T.D. & Rogers, A.D. (2013) Evidence for magma‐carbonate interaction beneath Syrtis Major, Mars. Journal of Geophysical Research, 118, 126137.CrossRefGoogle Scholar
Glotch, T.D., Christensen, P.R., & Sharp, T.G. (2006a) Fresnel modeling of hematite crystal surfaces and application to martian hematite spherules. Icarus, 181, 408418.CrossRefGoogle Scholar
Glotch, T.D., Bandfield, J.L., Christensen, P.R., et al. (2006b) Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. Journal of Geophysical Research, 111, E12S03, DOI:10.1029/2005JE002672.CrossRefGoogle Scholar
Golombek, M., Huertas, A., Kipp, D., & Calef, F. (2012) Detection and characterization of rocks and rock size-frequency distributions at the final four Mars Science Laboratory landing sites. International Journal of Mars Science and Exploration, 7, 122.Google Scholar
Greenhagen, B.T., Lucey, P.G., Wyatt, M.B., et al. (2010) Global silicate mineralogy of the Moon from the Diviner Lunar Radiometer. Science, 329, 1507–1509.CrossRefGoogle ScholarPubMed
Hamilton, V.E. & Christensen, P.R. (2000) Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy. Journal of Geophysical Research, 105, 97179733.CrossRefGoogle Scholar
Hamilton, V.E. & Ruff, S.W. (2012) Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source. Icarus, 218, 917949.Google Scholar
Hamilton, V.E., Christensen, P.R., & McSween, H.Y. (1997) Determination of martian meteorite lithologies and mineralogies using vibrational spectroscopy. Journal of Geophysical Research, 102, 2559325604.CrossRefGoogle Scholar
Hecker, C., Dilles, J.H., van der Meijde, M., & van der Meer, F.D. (2012) Thermal infrared spectroscopy and partial least squares regression to determine mineral modes of granitoid rocks. Geochemistry Geophysics Geosystems, 13, Q03021, DOI:10.1029/2011GC004004.CrossRefGoogle Scholar
Huang, J., Edwards, C.S., Ruff, S.W., Christensen, P.R., & Xiao, L. (2013) A new method for the semiquantitative determination of major rock‐forming minerals with thermal infrared multispectral data: Application to THEMIS infrared data. Journal of Geophysical Research, 118, 21462152.CrossRefGoogle Scholar
Johnson, J.R., Staid, M.I., Titus, T.N., & Becker, K. (2006) Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars. Icarus, 180, 6074.CrossRefGoogle Scholar
Lagerros, J.S. (1998) Thermal physics of asteroids. IV. Thermal infrared beaming. Astronomy and Astrophysics, 332, 11231132.Google Scholar
Lane, M.D. & Christensen, P.R. (1998) Thermal infrared emission spectroscopy of salt minerals predicted for Mars. Icarus, 135, 528536.CrossRefGoogle Scholar
Lawson, C.L. & Hanson, R.J. (1974) Solving least squares problems. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Li, L. & Mustard, J.F. (2003) Highland contamination in lunar mare soils: Improved mapping with multiple end‐member spectral mixture analysis (MESMA). Journal of Geophysical Research, 108, DOI:10.1029/2002JE001917.CrossRefGoogle Scholar
Malinowski, E.R. (1991) Factor analysis in chemistry, 2nd edn. John Wiley & Sons, New York.Google Scholar
Nowicki, S. & Christensen, P. (2007) Rock abundance on Mars from the thermal emission spectrometer. Journal of Geophysical Research, 112, DOI:10.1029/2006JE002798.CrossRefGoogle Scholar
Pan, C., Rogers, A., & Michalski, J. (2015a) Thermal and near‐infrared analyses of central peaks of martian impact craters: Evidence for a heterogeneous martian crust. Journal of Geophysical Research, 120, 662688.CrossRefGoogle Scholar
Pan, C., Rogers, A., & Thorpe, M. (2015b) Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 2. Application to compacted fine‐grained mineral mixtures and assessment of applicability of partial least squares methods. Journal of Geophysical Research, 120, 1984–2001.Google Scholar
Ramsey, M.S. (2002) Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end‐member deconvolution for spaceborne thermal infrared data of Earth and Mars. Journal of Geophysical Research, 107, DOI:10.1029/2001JE001827.Google Scholar
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.CrossRefGoogle Scholar
Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. (1998) Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65, 267279.CrossRefGoogle Scholar
Rogers, A. & Aharonson, O. (2008) Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements. Journal of Geophysical Research, 113, DOI:10.1029/2007JE002995.CrossRefGoogle Scholar
Ruff, S.W. & Christensen, P.R. (2002) Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. Journal of Geophysical Research, 107, 5119, DOI:10.1029/2001JE001580.Google Scholar
Ruff, S.W. & Hamilton, V.E. (2017) Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars. American Mineralogist, 102, 235251.CrossRefGoogle Scholar
Sinton, W.M. (1981) The thermal emission spectrum of Io and a determination of the heat flux from its hot spots. Journal of Geophysical Research, 86, 31223128.CrossRefGoogle Scholar
Smith, M.D., Bandfield, J.L., & Christensen, P.R. (2000) Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra. Journal of Geophysical Research, 105, 95899607.CrossRefGoogle Scholar
Spencer, J.R. (1990) A rough-surface thermophysical model for airless planets. Icarus, 83, 2738.CrossRefGoogle Scholar
Thomson, J.L. & Salisbury, J.W. (1993) The mid-infrared reflectance of mineral mixtures (7–14 μm). Remote Sensing of Environment, 45, 113.CrossRefGoogle Scholar
Thorpe, M.T., Rogers, A.D., Bristow, T.F., & Pan, C. (2015) Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 1. Application to sedimentary rocks. Journal of Geophysical Research, 120, 19561983.CrossRefGoogle Scholar
Wold, S., Sjöström, M., & Eriksson, L. (2001) PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109130.CrossRefGoogle Scholar
Wyatt, M.B., Hamilton, V.E., McSween, H.Y., Christensen, P.R., & Taylor, L.A. (2001a) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 1471114732.Google Scholar
Wyatt, M.B., Hamilton, V.E., McSween, H.Y., Jr., Christensen, P.R., & Taylor, L.A. (2001b) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy, 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 14,71114,732.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×