Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T06:05:26.169Z Has data issue: false hasContentIssue false

8 - Ammonia

Published online by Cambridge University Press:  01 December 2022

Jacqueline O'Connor
Affiliation:
Pennsylvania State University
Bobby Noble
Affiliation:
Electric Power Research Institute
Tim Lieuwen
Affiliation:
Georgia Institute of Technology
Get access

Summary

Ammonia is the second most transported chemical in the world today, with a global annual trade of around 180 Mtons. The history of the chemical’s generation and widespread utilization is based around demand from global food production, resulting in rapid expansion of the fertilizer industry through the twentieth century. Current widespread utilization of ammonia facilitated by global transportation has been enabled through the significant breakthrough of two German Nobel prizewinners (Fritz Haber and Carl Bosch) in the early twentieth century. Their catalytic Haber–Bosch process enabled the creation of ammonia from its constituent elements on industrial scale for the first time. The chemical can be utilized as a fuel via two main routes: first, by cracking ammonia to recover hydrogen prior to utilization in a combustion system or fuel cell, or secondly by direct ammonia use. Whereas the former requires an additional process penalty, the latter is less well publicized to the inherent difficulties associated with direct ammonia/air utilization, excessive NOx production when unproperly burned, and slow reaction kinetics, resulting in challenges associated with ignition and flame stability. Recent advances on enhanced ammonia combustion strategies have increased the potential of directly fired ammonia utilization or ammonia/fuel mixtures.

Type
Chapter
Information
Renewable Fuels
Sources, Conversion, and Utilization
, pp. 245 - 274
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AFC Energy (2013). AFC wins funding for Alkammonia project, gains Diverse Energy. Fuel Cells Bulletin, 2013(1), 9. doi: 10.1016/S1464-2859(13)70022-1.Google Scholar
Afif, A., Radenahmad, N., Cheok, Q., Shams, S., Kim, J. H. and Azad, A. K. (2016). Ammonia-fed fuel cells: A comprehensive review. Renewable and Sustainable Energy Reviews, 60, 822–35. doi: 10.1016/j.rser.2016.01.120.CrossRefGoogle Scholar
Appl, M. (2011a). Ammonia, 1. Introduction, in Barbara Elvers (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, 107. doi: 10.1002/14356007.a02_143.pub3.Google Scholar
Appl, M. (2011b). Ammonia, 2. Production processes. in Barbara Elvers (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, 139.doi: 10.1002/14356007.o02_o11.Google Scholar
Argus Media Group (2019). Magellan midstream to decommission ammonia pipeline. Available at: www.argusmedia.com/en/news/1839099-magellan-midstream-to-decommission-ammonia-pipeline (Accessed: May 30, 2021).Google Scholar
Arif, K. and Brian, E. (2012). Fuel conditioning system for ammonia fired power plants, 2012 Annual NH3 Fuel Conference.Google Scholar
Asian Renewable Energy Hub (2020). About the Asian Renewable Energy Hub. Available at: https://asianrehub.com/about/ (Accessed: May 30, 2021).Google Scholar
Ballard (2016). Fuel cell power module for heavy duty motive applications. Burnaby: Ballard. Available at: www.ballard.com/docs/default-source/motive-modules-documents/fcvelocity_hd_family_of_products_low_res.pdf (Accessed: May 30, 2021).Google Scholar
Barkan, C. (2014). Introduction to North American rail transportation. Railway Engineering Education Symposium.Google Scholar
Bazhenova, T. A. and Shilov, A. E. (1995). Nitrogen fixation in solution. Coordination Chemistry Reviews. 60, 69145. doi: 10.1016/0010-8545(95)01139-G.Google Scholar
Boothroyd, R. G. (2014). A proposed Australian transition to an anhydrous ammonia fuel transport economy to replace liquid petroleum fuels, in Al-Kayiem, H. H., Brebbia, C. A., and Zubir, S. S. (eds.), Energy and sustainability V. WIT Press, 443–56.Google Scholar
Božo, M. G., Mashruk, S., Zitouni, S. and Valera-Medina, A. (2021). Humidified ammonia/hydrogen RQL combustion in a trigeneration gas turbine cycle. Energy Conversion and Management, 227, 113625. doi: 10.1016/j.enconman.2020.113625.CrossRefGoogle Scholar
BP (2019). Statistical Review of World Energy. Available at: www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (Accessed: May 5, 2021).Google Scholar
Brown, D. E., Edmonds, T., Joyner, R. W., McCarroll, J. J. and Tennison, S. R. (2014). The genesis and development of the commercial BP doubly promoted catalyst for ammonia synthesis. Catalysis Letters, 144(4), 545–52. doi: 10.1007/s10562-014-1226-4.Google Scholar
Brown, T. (2017). The new generation of fuel cells: Fast, furious, and flexible. Ammonia Energy. Available at: www.ammoniaenergy.org/the-new-generation-of-fuel-cells-fast-furious-and-flexible/ (Accessed: July 17, 2019).Google Scholar
Brown, T. (2020). Saudi Arabia to export renewable energy using green ammonia. Ammonia Energy Association. Available at: www.ammoniaenergy.org/articles/saudi-arabia-to-export-renewable-energy-using-green-ammonia/ (Accessed: May 30, 2021).Google Scholar
Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D. and Hartley, P. (2018). National Hydrogen Roadmap – CSIRO. Available at: https://publications.csiro.au/rpr/pub?pid=csiro:EP184600 (Accessed: May 4, 2021).Google Scholar
Burén, S. and Rubio, L. M. (2018). State of the art in eukaryotic nitrogenase engineering. FEMS Microbiology Letters, 365(2), fnx274. doi: 10.1093/femsle/fnx274.Google Scholar
Cardin, M. (2011). Ammonia as a refrigerant: Pros and cons, goodway. Available at: www.goodway.com/hvac-blog/2009/08/ammonia-as-a-refrigerant-pros-and-cons/ (Accessed: May 30, 2021).Google Scholar
Cavaliere, A. and De Joannon, M. (2004). Mild combustion. Progress in Energy and Combustion Science, 30(4), 329–66. doi: 10.1016/j.pecs.2004.02.003.CrossRefGoogle Scholar
Cefic, E. (2011). Guidelines for measuring and managing CO2 emission from freight transport operations. Cefic Reports, 1, 118.Google Scholar
Cesaro, Z., Ives, M., Nayak-Luke, R., Mason, M. and Bañares-Alcántara, R. (2021). Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Applied Energy, 282(Part A), 116009. doi: 10.1016/j.apenergy.2020.116009.CrossRefGoogle Scholar
Chellappa, A. S., Fischer, C. M. and Thomson, W. J. (2002). Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Applied Catalysis A: General, 227(1–2), 231–40. doi: 10.1016/S0926-860X(01)00941-3.Google Scholar
Cherkasov, N., Ibhadon, A. O. and Fitzpatrick, P. (2015). A review of the existing and alternative methods for greener nitrogen fixation. Chemical Engineering and Processing: Process Intensification, 90, 2433. doi: 10.1016/j.cep.2015.02.004.CrossRefGoogle Scholar
Committee on Climate Change (CCC) (2019). Net Zero – The UK’s contribution to stopping global warming – Climate Change Committee. Available at: www.theccc.org.uk/publication/net-zero-the-uks-contribution-to-stopping-global-warming/ (Accessed: May 5, 2021).Google Scholar
Cornelius, W., Huellmantel, L. W. and Mitchell, H. R. (1965). Ammonia as an engine fuel. SAE Technical Papers. doi: 10.4271/650052.CrossRefGoogle Scholar
Dincer, I. and Zamfirescu, C. (2012). Apparatus for using ammonia as a sustainable fuel, refrigerant and NOx reduction agent. Available at: https://patents.google.com/patent/US8272353B2/en.Google Scholar
Dincer, I. and Zamfirescu, C. (2016). A review of novel energy options for clean rail applications. Journal of Natural Gas Science and Engineering, 28, 461–78. doi: 10.1016/j.jngse.2015.12.007.CrossRefGoogle Scholar
DNV-GL (2018). Maritime forecast to 2050. Energy Transition Outlook 2018. Available at: https://eto.dnv.com/2019/Maritime/forecast (Accessed: May 30, 2021).Google Scholar
Dolan, M. (2018). Pilot-scale NH3-to-H2 system for FCEV refuelling. NH3 Event 2018. Rotterdam. www.ammoniaenergy.org/event/nh3-fuel-conference-2018/Google Scholar
Duijm, N. J., Markert, F. and Paulsen, J. L. (2005). Safety assessment of ammonia as a transport fuel. Denmark: Risø National Laboratory. Available at: www.osti.gov/etdeweb/servlets/purl/20607161.Google Scholar
Duynslaegher, C., Jeanmart, H. and Vandooren, J. (2009). Use of ammonia as a fuel for SI engine. Proceedings of the European Combustion Meeting. Available at: www.academia.edu/1093081/Use_of_ammonia_as_a_fuel_for_SI_engine.Google Scholar
Elishav, O., Mosevitzky Lis, B., Miller, E. M., Arent, D. J., Valera-Medina, A., Grinberg Dana, A., Shter, G. E. and Grader, G. S. (2020). Progress and prospective of nitrogen-based alternative fuels. Chemical Reviews, 120(12), 5352–436. doi: 10.1021/acs.chemrev.9b00538.CrossRefGoogle ScholarPubMed
ETN (2020). FLEXnCONFU. Available at: https://flexnconfu.eu (Accessed: May 30, 2021).Google Scholar
European Fertilizer Manufacturers Association (2007). Guidance for transporting ammonia by rail. 2nd ed. Brussels: European Fertilizer Manufacturers Association. Available at: https://cefic.org/app/uploads/2018/12/Transporting-Ammonia_ByRail-by-EFMA-2007-GUIDELINES-_ROAD-SUBSTANCE.pdf.Google Scholar
Forbes, C. (2020). Zero emission vessels for shipping: Optimising a green ammonia production, distribution and port bunkering network. MEng thesis. University of Oxford.Google Scholar
Frigo, S., Gentili, R. and De Angelis, F. (2014). Further Insight into the Possibility to Fuel a SI Engine with Ammonia plus Hydrogen. SAE/JSAE 2014 Small Engine Technology Conference & Exhibition. Pisa: SAE International. doi: 10.4271/2014-32-0082.CrossRefGoogle Scholar
Ganley, J. C. and Bowery, M. S. (2010). Engine-ready, carbon free ammonia fuel. 2010 Annual NH3 Fuel Conference. Available at: https://nh3fuel.files.wordpress.com/2012/05/afc_2010_ganleyjc_boweryms.pdf (Accessed: August 21, 2019).Google Scholar
Grannell, S., Stack, C. and Gillespie, D. (2010). A comparison of combustion promoters for ammonia and two ways to run engines on ammonia as the only fuel. 2010 Annual NH3 Fuel Conference, 14.Google Scholar
Grasham, O., Dupont, V., Camargo-Valero, M. A., García-Gutiérrez, P. and Cockerill, T. (2019). Combined ammonia recovery and solid oxide fuel cell use at wastewater treatment plants for energy and greenhouse gas emission improvements. Applied Energy, 240, 698708. doi: 10.1016/j.apenergy.2019.02.029.Google Scholar
Gray, J.T., Meckel, N.T., Quillian, R.D., and Dimitroff, E. (1966). Ammonia fuel-engine compatibility and combustion. SAE Technical Paper 660156.Google Scholar
Gross, C. W. and Kong, S. C. (2013). Performance characteristics of a compression-ignition engine using direct-injection ammonia-DME mixtures. Fuel, 103, 1069–79. doi: 10.1016/j.fuel.2012.08.026.Google Scholar
Hejze, T., Besenhard, J. O., Kordesch, K., Cifrain, M. and Aronsson, R. R. (2008). Current status of combined systems using alkaline fuel cells and ammonia as a hydrogen carrier. Journal of Power Sources, 176(2), 490–93. doi: 10.1016/j.jpowsour.2007.08.117.Google Scholar
Hernandez, F. (2013). La cifra de muertos por la fuga de amoniaco en Oaxaca aumenta a nueve. CNN Mexico. Available at: https://expansion.mx/nacional/2013/08/20/una-fuga-de-amoniaco-de-un-ducto-de-pemex-causa-tres-muertos-en-oaxaca (Accessed: August 28, 2019).Google Scholar
Hewlett, S. G., Valera-Medina, A., Pugh, D. G. and Bowen, P. J. (2019). Gas turbine co-firing of steelworks ammonia with coke oven gas or methane: A fundamental and cycle analysis. Proceedings of the ASME Turbo Expo. Phoenix, Arizona, GT2019-91404. doi: 10.1115/GT2019-91404.CrossRefGoogle Scholar
Hignett, T. P. (1985). Transportation and storage of ammonia. Fertilizer Manual. Dordrecht: Springer Netherlands, 7382. doi: 10.1007/978-94-017-1538-6_7.Google Scholar
Hiraoka, K., Fujimura, Y., Watanabe, Y., Kai, M., Sakata, K., Ishimoto, Y. and Mizuno, Y. (2018). Cost Evaluation Study on Low Carbon Ammonia and Coal Co-Fired Power Generation. NH3 Fuel Conference, 116. Available at: www.ammoniaenergy.org/wp-content/uploads/2019/12/0830-Cost-Evaluation-Study-on-Low-Carbon-NH3_JGC-IAE.pdf (Accessed: May 5, 2021).Google Scholar
International Energy Agency (2019). Future of hydrogen. Available at: www.iea.org/hydrogen2019/ (Accessed: January, 19 2021).Google Scholar
ISPT (2017). Power to ammonia. Report. Amersfoort: ISPT. Available at: www.ispt.eu/media/ISPT-P2A-Final-Report.pdf (Accessed: January 19, 2021).Google Scholar
Ito, Shintaro, Uchida, Masahiro, Onishi, Shogo, Fujimor, T., and Kobayashi, T.. (2018). Performance of ammonia-natural gas co-fired gas turbine for power generation. AIChE Annual Meeting. Available at: https://nh3fuelassociation.org/2018/12/07/performance-of-ammonia-natural-gas-co-fired-gas-turbine-for-power-generation/Google Scholar
Ito, T., Ishii, H., Zhang, J., Ishihara, S. and Suda, T. (2019). New technology of the ammonia co-firing with pulverized coal to reduce the NOx emission. AIChE Annual Meeting. Available at: www.ammoniaenergy.org/wp-content/uploads/2019/08/20191112.1517-AIChE2019_IHI_final.pdf (Accessed: May 5, 2021).Google Scholar
Khateeb, A. A., Guiberti, T. F., Zhu, X., Younes, M., Jamal, A. and Roberts, W. L. (2020). Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames. International Journal of Hydrogen Energy, 45(41), 22008–18. doi: 10.1016/j.ijhydene.2020.05.236.Google Scholar
Koike, M., Miyagawa, H., Suzuoki, T. and Ogasawara, K. (2012). Ammonia as a hydrogen energy carrier and its application to internal combustion engines. Institution of Mechanical Engineers – Sustainable Vehicle Technologies: Driving the Green Agenda, 1, 6170. doi: 10.1533/9780857094575.2.61.CrossRefGoogle Scholar
Kondo, S., Takahashi, A., Tokuhashi, K. and Sekiya, A., (2002). RF number as a new index for assessing combustion hazard of flammable gases. Journal of Hazardous Materials, 93(3), 259–67. doi: 10.1016/S0304-3894(02)00117-6.Google Scholar
Korean Register (KR) (2019). Forecasting the alternative marine fuel: Ammonia. Available at: www.krs.co.kr/TECHNICAL_FILE/KR_Forecasting the Alternative Marine Fuel_Ammonia.pdf (Accessed: May 5, 2021).Google Scholar
Kroch, E. (1945). Ammonia – a fuel for motor buses. Journal of the Institute of Petroleum, 31, 343–50. Available at: http://claverton-energy.com/cms4/wp-content/files/NH3_bus_1945_JInstPetrol31_Pg213.pdf.Google Scholar
Kujiraoka, H., Izumi, T., Yoshizuru, Y., Suemasy, T., Ueda, M., Niki, T., Itou, T., Nishio, M., Murai, R. and Akamatsu, F. (2018). Evaluation of the cement clinker fired in the combustion furnace of heavy-oil and NH3. AIChE Annual Meeting. Available at: https://nh3fuelassociation.org/wp-content/uploads/2018/12/1700-549g181031_Kujiraoka_UBE_NoAPP.pdf.Google Scholar
Kurata, O., Iki, N., Matsunuma, T., Inoue, T., Tsujimura, T., Furutani, H., Kobayashi, H. and Hayakawa, A. (2017). Performances and emission characteristics of NH3 –air and NH3 CH4 –air combustion gas-turbine power generations. Proceedings of the Combustion Institute, 36(3), 3351–59. doi: 10.1016/j.proci.2016.07.088.Google Scholar
Kurata, O., Iki, N., Inoue, T., Matsunuma, T., Tsujimura, T., Furutani, H., Kawano, M., Arai, K., Okafor, E. C., Hayakawa, A. and Kobayashi, H. (2019). Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation. Proceedings of the Combustion Institute, 37(4), 4587–95. doi: 10.1016/j.proci.2018.09.012.Google Scholar
Kurvits, T. and Marta, T. (1998). Agricultural NH3 and NOx emissions in Canada. Environmental Pollution, 102(1), 187–94. doi: 10.1016/S0269-7491(98)80032-8.Google Scholar
Lan, R., Irvine, J. T. S. and Tao, S. (2012). Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy, 37(2), 1482–94. doi: 10.1016/j.ijhydene.2011.10.004.CrossRefGoogle Scholar
Lanser, A. (2019). Controlled industrial-scale combustion of Ammonia for high-temperature applications. NH3 European Conference. Available at: https://nh3event.com/presentations/.Google Scholar
Lee, D. (2018). Simulation study of the new combustion strategy of pre-combustion-assisted compression ignition for internal combustion engine fueled by pure ammonia. Department of Mechanical Engineering, Seoul National University. Available at: https://hdl.handle.net/10371/140573.Google Scholar
Leeladhar, R., Grannell, S., Bohac, S., and Assanis, D. (2012). Comparison of ammonia/gasoline and ammonia/ethanol fuel mixtures for use in IC engines. NH3. Available at: https://nh3fuelassociation.org/wp-content/uploads/2012/05/leeladhar_nh3.pdf.Google Scholar
Leighty, B. (2008). Energy storage with anhydrous ammonia: Comparison with other energy storage. Annual NH3 fuel conference: Ammonia: The key to US Energy Independence.Google Scholar
Leighty, W. C. (2013). Alaska’s renewables-source ammonia fuel energy storage pilot plant: Toward community energy independence. Power and Energy Society General Meeting (PES), 2013 IEEE. IEEE, 15.CrossRefGoogle Scholar
Leighty, W. C. and Holbrook, J. H. (2012). Alternatives to electricity for transmission, firming storage, and supply integration for diverse, stranded, renewable energy resources: Gaseous hydrogen and anhydrous ammonia fuels via underground pipelines. Energy Procedia, 29, 332–46. doi: 10.1016/j.egypro.2012.09.040.Google Scholar
Lloyd’s Register and UMAS (2020). Techno-economic assessment of zero-carbon fuels. Lloyds Register (March). Available at: www.lr.org/en-gb/insights/global-marine-trends-2030/techno-economic-assessment-of-zero-carbon-fuels/ (Accessed: May 4, 2021).Google Scholar
Ma, Q., Ma, J., Zhou, S., Yan, R., Gao, J. and Meng, G. (2007). A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. Journal of Power Sources, 164(1), 8689. doi: 10.1016/j.jpowsour.2006.09.093.Google Scholar
MacFarlane, D. R. et al. (2020). A roadmap to the ammonia economy. Joule, 4(6), 1186–205. doi: 10.1016/j.joule.2020.04.004.Google Scholar
MAN Energy Solutions (2019). Engineering the future two-stroke green-ammonia engine. Copenhagen, Denmark: MAN Energy Solutions. Available at: https://fathom.world/wp-content/uploads/2020/05/engineeringthefuturetwostrokegreenammoniaengine1589339239488.pdf.Google Scholar
Mitsubishi Power Ltd. (2021). Mitsubishi power commences development of world’s first ammonia-fired 40MW class gas turbine system. Available at: https://power.mhi.com/news/20210301.html (Accessed: May 30, 2021).Google Scholar
Mørch, C. S., Bjerre, A., Gøttrup, M. P., Sorenson, S. C. and Schramm, J. (2011). Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system. Fuel, 90(2), 854–64. doi: 10.1016/j.fuel.2010.09.042.Google Scholar
Morgan, E. R. (2013). Techno-economic feasibility study of ammonia plants powered by offshore wind recommended citation – PhD Thesis. University of Massachusetts Amherst.Google Scholar
Morgan, E. R., Manwell, J. F. and McGowan, J. G. (2017). Sustainable ammonia production from U.S. offshore wind farms: A techno-economic review. ACS Sustainable Chemistry and Engineering, 5(11), 9554–67. doi: 10.1021/acssuschemeng.7b02070.CrossRefGoogle Scholar
National Transportation Safety Board (2004). Pipeline Accident Brief. Accident no. DCA05-MP001. Washington DC, U.S.A.Google Scholar
Newhall, H. and Starkman, E. (1966). Theoretical performance of ammonia as a gas turbine fuel. SAE Technical Paper 660768.Google Scholar
Ngayan, N., Kristoff, A. and Simonova, A. (2015). Togliattiazot danger: Ammonia pipeline disaster in southern Russia, Ecology Russia. Available at: http://ecologyrussia.com/togliattiazot-danger-ammonia-pipeline-disaster-in-southern-russia/ (Accessed: May 30, 2021).Google Scholar
Ni, M., Leung, D. Y. C. and Leung, M. K. H. (2008). Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte. Journal of Power Sources, 183(2), 687–92. doi: 10.1016/j.jpowsour.2008.05.018.Google Scholar
Niels de Vries (2019). Safe and effective application of ammonia as a marine fuel. TU DELFT. Available at: https://repository.tudelft.nl/.Google Scholar
Niki, Y., Nitta, Y., Sekiguchi, H. and Hirata, K. (2019). Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air. Journal of Engineering for Gas Turbines and Power, 141(6), 061020. doi: 10.1115/1.4042507.Google Scholar
Nyborg, R. and Lunde, L. (1996). Measures for reducing SCC in anhydrous ammonia storage tanks. Process Safety Progress, 15(1), 3241. doi: 10.1002/prs.680150110.CrossRefGoogle Scholar
Office of Industrial Relations Wokplace Health and Safety Queensland (2018). Emergency planning for ammonia-based refrigeration systems guide. Queensland, Australia. Available at: www.worksafe.qld.gov.au/__data/assets/pdf_file/0020/20954/ammonia-based-refrigeration-systems.pdf.Google Scholar
Okafor, E. C., Somarathne, K. K. A., Hayakawa, A., Kudo, T., Kurata, O., Iki, N. and Kobayashi, H. (2019). Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine. Proceedings of the Combustion Institute, 37(4), 4597–606. doi: 10.1016/j.proci.2018.07.083.CrossRefGoogle Scholar
Oram, B. (2014). Ammonia in groundwater, runoff, surface water, lakes and streams. Water Research Wastershed Centre. Available at: https://water-research.net/index.php/ammonia-in-groundwater-runoff-and-streams (Accessed: May 30, 2021).Google Scholar
Papavinasam, S. (2014). Oil and gas industry network. in Papavinasam, S. (ed), Corrosion control in the oil and gas industry. Oxford, UK: Gulf Professional Publishing, 41131. doi: 10.1016/b978-0-12-397022-0.00002-9.Google Scholar
Pfromm, P. H. (2017). Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy, 9(3), p. 034702. doi: 10.1063/1.4985090.Google Scholar
Philibert, C. (2018). Renewable energy for industry: Offshore wind in Northern Europe. Rotterdam, the Netherlands: International Energy Agency. Available at: https://iea.blob.core.windows.net/assets/bfc5d90a-07e5-4f14-8ee2-f91763fbd99f/OffshoreDecarbEUIndustry.pdf.Google Scholar
Pochet, M., Truedsson, I., Foucher, F., Jeanmart, H. and Contino, F. (2017). Ammonia-hydrogen blends in homogeneous-charge compression-ignition engine. 2017-24-0087: SAE International.Google Scholar
Porter, D. H. (1998). The life and times of Sir Goldsworthy Gurney: Gentleman scientist and inventor, 1793–1875. Lehigh University Press.Google Scholar
Pugh, D., Bowen, P., Valera-Medina, A., Giles, A., Runyon, J. and Marsh, R. (2019). Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame. Proceedings of the Combustion Institute, 37(4), 5401–09. doi: 10.1016/j.proci.2018.07.091.Google Scholar
Pugh, D., Runyon, J., Bowen, P., Giles, A., Valera-Medina, A., Marsh, R., Goktepe, B. and Hewlett, S. (2020). An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions. Proceedings of the Combustion Institute, 38(4), 6451–59. doi: 10.1016/j.proci.2020.06.310.Google Scholar
Pugh, D., Valera-Medina, A., Bowen, P., Giles, A., Goktepe, B., Runyon, J., Morris, S., Hewlett, S. and Marsh, R. (2020). Emissions performance of staged premixed and diffusion combustor concepts for an NH3/AIR flame with and without reactant humidification. Proceedings of the ASME Turbo Expo. doi: 10.1115/GT2020-14953.Google Scholar
Reiter, A. J. and Kong, S. C. (2011). Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel, 90(1), 8797. doi: 10.1016/j.fuel.2010.07.055.Google Scholar
Rossetti, I. (2020). Reactor design, modelling and process intensification for ammonia synthesis. in Inamuddin, A. and Rajender, B. (eds.) Green Energy and Technology. Switzerland: Springer Nature, 1748. doi: 10.1007/978-3-030-35106-9_2.Google Scholar
Seaman, R. W. and Huson, G. (2013). The choice of NH3 to fuel the X-15 Rocket plane. NH3 Association. Available at: https://nh3fuel.files.wordpress.com/2013/01/2011-seaman-huson.pdf (Accessed: May 30, 2021).Google Scholar
Skeffington, R. A. and Wilson, E. J. (1988). Excess nitrogen deposition: Issues for consideration. Environmental Pollution, 54(3–4), 159–84. doi: 10.1016/0269-7491(88)90110-8.Google Scholar
Smill, V. and Streatfeild, R. A. (2002). Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food production. Electronic Green Journal, 7(3), 338. doi: 10.2307/3985938.Google Scholar
Sorrentino, G., Sabia, P., Bozza, P., Ragucci, R. and de Joannon, M. (2019). Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions. Applied Energy, 254, 113676. doi: 10.1016/j.apenergy.2019.113676.CrossRefGoogle Scholar
Tanigawa, H. (2018). Test results of the ammonia mixed combustion at Mizushima Power Station Unit No.2 and related patent applications, NH3 Association. Available at: https://nh3fuelassociation.org/wp-content/uploads/2018/12/1530-Chugoku-Electric-Power-Co.pdf (Accessed: June 24, 2019).Google Scholar
The Royal Society (2020). Ammonia: Zero-carbon fertiliser, fuel and energy store. Available at: royalsociety.org/green-ammonia (Accessed: January 19, 2021).Google Scholar
TogliattiAzot (2016). Production. Available at: www.toaz.ru/eng/about/production.phtml (Accessed: May 30, 2021).Google Scholar
Tripodi, A., Conte, F. and Rossetti, I. (2021). Process intensification for ammonia synthesis in multibed reactors with Fe-wustire and Ru/C catalysts. Industrial & Engineering Chemistry Research, 60(2), 908–15. doi: 10.1021/acs.iecr.0c05350.Google Scholar
UN Industrial Development Organization (1998) Fertilizer Manual. 3rd ed. Kluwer Academic Publishers, Chapter 7, p. 195. Available at: www.springer.com/gp/book/9780792350323Google Scholar
Valera-Medina, A., Morris, S., Runyon, J., Pugh, D. G., Marsh, R., Beasley, P. and Hughes, T. (2015). Ammonia, methane and hydrogen for gas turbines. Energy Procedia, 75, 118–23. doi: 10.1016/j.egypro.2015.07.205.CrossRefGoogle Scholar
Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I. and Bowen, P. J. (2018). Ammonia for power. Progress in Energy and Combustion Science, 69, 63102. doi: 10.1016/j.pecs.2018.07.001.Google Scholar
Valera-Medina, A. Gutesa, M., Xiao, H., Pugh, D., Giles, A., Goktepe, B., Marsh, R. and Bowen, P. (2019). Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation. International Journal of Hydrogen Energy, 44(16), 8615–26. doi: 10.1016/j.ijhydene.2019.02.041.Google Scholar
Valera-Medina, A. (2020). Stored ammonia for power (SAFE). Available at: www.safeammonia.com (Accessed: May 30, 2021).Google Scholar
Valera-Medina, A., Amer-Hatem, F., Azad, A. K., Dedoussi, I. C., De Joannon, M., Fernandes, R. X., Glarborg, P., Hashemi, H., He, X., Mashruk, S., McGowan, J., Mounaim-Rouselle, C., Ortiz-Prado, A., Ortiz-Valera, A., Rossetti, I., Shu, B., Yehia, M., Xiao, H., and Costa, M. (2021). Review on ammonia as a potential fuel: From synthesis to economics. Energy & Fuels, 35(9), 69647029. doi: 10.1021/acs.energyfuels.0c03685.Google Scholar
Valera-Medina, A. and Banares-Alcantara, R. (2021). Techno-economic challenges of green ammonia as an energy vector. 1st ed. Academic Press. doi: 10.1016/c2019-0-01417-3.Google Scholar
Valera-Medina, A. and Roldan, A. (2020). Ammonia from steelworks. Green energy and technology. Springer Nature. 6980. doi: 10.1007/978-3-030-35106-9_4.Google Scholar
WÄRTSILÄ, Encyclopedia of Marine Technology (2016). Gas carrier types. Available at: www.wartsila.com/encyclopedia/term/gas-carrier-types (Accessed: May 4, 2021).Google Scholar
Watts, C. and Awan, S. (2019). Canadian fundamentals of fire fighter skills and hazardous materials response. 4th ed. Jones & Bartlett Learning.Google Scholar
Wijayanta, A. T., Oda, T., Purnomo, C. W., Kashiwagi, T. and Aziz, M. (2019). Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review. International Journal of Hydrogen Energy, 44(29), 15026–44. doi: 10.1016/j.ijhydene.2019.04.112.CrossRefGoogle Scholar
Woo, Y., Jang, J. Y., Lee, Y. J. and Kim, J. N. (2014). Recent progress on the ammonia-gasoline and the ammonia-diesel dual fueled ICE in Korea. 11th NH3 Fuel Conference.Google Scholar
Wood, R. D. (1903). Mond gas, Philadelphia Co. Available at: https://archive.org/stream/mondgas00woodrich#page/n5/mode/2up (Accessed: May 30, 2021).Google Scholar
Wood, T. J., Makepeace, J. W., Hunter, H. M., Jones, M. O. and David, W. I. (2015). Isotopic studies of the ammonia decomposition reaction mediated by sodium amide. Physical Chemistry Chemical Physics, 17(35), 22999–3006. doi: 10.1039/c5cp03560k.Google Scholar
World Health Organization (2003). Ammonia in drinking-water. Geneva, Switzerland: World Health Organization. Available at: www.who.int/water_sanitation_health/dwq/ammonia.pdf.Google Scholar
Zadick, A., Dubau, L., Artyushkova, K., Serov, A., Atanassov, P. and Chatenet, M. (2017). Nickel-based electrocatalysts for ammonia borane oxidation: Enabling materials for carbon-free-fuel direct liquid alkaline fuel cell technology. Nano energy, 37, 248–59. doi: 10.1016/j.nanoen.2017.05.035.Google Scholar
Zhang, L., You, C. O., Weishen, Y. A. and Liwu, L. I. (2007). A direct ammonia tubular solid oxide fuel cell. Chinese Journal of Catalysis, 28(9), 749–51. doi: 10.1016/S1872-2067(07)60062-X.Google Scholar
Zhu, X., Khateeb, A. A., Guiberti, T. F. and Roberts, W. L. (2020). NO and OH* emission characteristics of very-lean to stoichiometric ammonia-hydrogen-air swirl flames. Proceedings of the Combustion Institute, 38(4), 5155–62. doi: 10.1016/j.proci.2020.06.275.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×