Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T06:22:26.624Z Has data issue: false hasContentIssue false

5 - Fuel Cells and Hydrogen Production

Published online by Cambridge University Press:  01 December 2022

Jacqueline O'Connor
Affiliation:
Pennsylvania State University
Bobby Noble
Affiliation:
Electric Power Research Institute
Tim Lieuwen
Affiliation:
Georgia Institute of Technology
Get access

Summary

Hydrogen will play an increasingly important role in the push toward greater use of renewable energy and the reduction in carbon emissions from the transportation sector, electrical energy generation and transmission, and the production of commodity chemicals, such as ammonia and polyolefins. In this chapter, the operating principles of fuel cells and electrolyzers are detailed. The main function of these devices is the interconversion of electrical and chemical energy.

Type
Chapter
Information
Renewable Fuels
Sources, Conversion, and Utilization
, pp. 161 - 192
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadie, L. M., & Chamorro, J. M. (2009). The economics of gasification: A market-based approach. Energies, 2(3), 662694.CrossRefGoogle Scholar
Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: review and recommendation. International Journal of Hydrogen Energy, 44(29), 1507215086.CrossRefGoogle Scholar
Borup, R. L., Kusoglu, A., Neyerlin, K. C., Mukundan, R., Ahluwalia, R. K., Cullen, D. A., More, K. L., Weber, A. Z. & Myers, D. J. (2020). Recent developments in catalyst-related PEM fuel cell durability. Current Opinion in Electrochemistry, 21, 192200.CrossRefGoogle Scholar
Borup, R. L., & Vanderborgh, N. E. (1995). Design and testing criteria for bipolar plate materials for PEM fuel cell applications. Los Alamos National Laboratory, LA-UR-95-1303.CrossRefGoogle Scholar
Brown, A. (2019). Hydrogen Transport. The Chemical Engineer. www.thechemicalengineer.com/features/hydrogen-transport/ Accessed July 5, 2022Google Scholar
Brown, T. (2019). The cost of hydrogen: Platts launches hydrogen price assessment. www.ammoniaenergy.org/articles/the-cost-of-hydrogen-platts-launches-hydrogen-price-assessment/Google Scholar
Bushuyev, O. S., De Luna, P., Dinh, C. T., Tao, L., Saur, G., van de Lagemaat, J., Kelley, S. O. & Sargent, E. H. (2018). What should we make with CO2 and how can we make it? Joule, 2(5), 825832.Google Scholar
Buttler, A., & Spliethoff, H. (2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, 82, 24402454.Google Scholar
Chu, S., Cui, Y., & Liu, N. (2017). The path towards sustainable energy. Nature Materials, 16(1), 1622.Google Scholar
Crabtree, G. W., Dresselhaus, M. S., & Buchanan, M. V. (2004). The hydrogen economy. Physics Today, 57(12), 3944.Google Scholar
Danilov, V. A., & Tade, M. O. (2009). A CFD-based model of a planar SOFC for anode flow field design. International Journal of Hydrogen Energy, 34(21), 89989006.Google Scholar
Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 38473869.Google Scholar
Eguchi, K., Kojo, H., Takeguchi, T., Kikuchi, R., & Sasaki, K. (2002). Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics, 152, 411416.CrossRefGoogle Scholar
Franchi, G., Capocelli, M., de Falco, M., Piemonte, V., & Barba, D. (2020). Hydrogen production via steam reforming: A critical analysis of MR and RMM technologies. Membranes, 10(1), 10.Google Scholar
Fronk, M.H., Wetter, D.L., Masten, D.A. and Bosco, A., 1999, November. PEM Fuel Cell System Solutions for Transportation. SAE Technical Papers, 2000-01-0373.Google Scholar
Fujiwara, S., Kasai, S., Yamauchi, H., Yamada, K., Makino, S., Matsunaga, K., Yoshino, M., Kameda, T., Ogawa, T., Momma, S. & Hoashi, E. (2008). Hydrogen production by high temperature electrolysis with nuclear reactor. Progress in Nuclear Energy, 50(2–6), 422426.Google Scholar
Fuller, T. F., & Harb, J. N. (2018). Electrochemical Engineering. John Wiley & Sons.Google Scholar
Gencten, M., & Sahin, Y. (2020). A critical review on progress of the electrode materials of vanadium redox flow battery. International Journal of Energy Research, 44(10), 79037923.Google Scholar
Gillette, J. L., & Kolpa, R. L. (2007). Overview of Interstate Hydrogen Pipeline Systems. Argonne National Lab Report of Environmental Sciences Division, ANL/EVS/TM/08-2 (ANL), Argonne, IL, USA.Google Scholar
Hassanpouryouzband, A., Joonaki, E., Edlmann, K., & Haszeldine, R. S. (2021). Offshore geological storage of hydrogen: Is this our best option to achieve net-zero? ACS Energy Letters, 6, 21812186.Google Scholar
Hemighaus, G., Boval, T., Bacha, J., Barnes, F., Franklin, M., Gibbs, L., Hogue, N., Jones, J., Lesnini, D., Lind, J., & Morris, J. (2007). Aviation fuels: Technical review. Chevron Products Company.Google Scholar
Hine, F. (2012). Electrode Processes and Electrochemical Engineering. Springer Science & Business Media.Google Scholar
Hou, M., Chen, L., Guo, Z., Dong, X., Wang, Y., & Xia, Y. (2018). A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nature Communications, 9(1), 18.CrossRefGoogle ScholarPubMed
Huang, K., & Goodenough, J. B. (2009). Solid Oxide Fuel Cell Technology: Principles, Performance and Operations. Woodhead Publishing.Google Scholar
Jensen, C. M., Akiba, E., & Li, H.-W. (2016). Hydrides: Fundamentals and applications. Energies, 9(4), 308. Multidisciplinary Digital Publishing Institute.CrossRefGoogle Scholar
Jensen, J. O., Vestbø, A. P., Li, Q., & Bjerrum, N. J. (2007). The energy efficiency of onboard hydrogen storage. Journal of Alloys and Compounds, 446, 723728.CrossRefGoogle Scholar
Jeon, D. H., Greenway, S., Shimpalee, S., & van Zee, J. W. (2008). The effect of serpentine flow-field designs on PEM fuel cell performance. International Journal of Hydrogen Energy, 33(3), 10521066.Google Scholar
Khoo, H. H., Halim, I., & Handoko, A. D. (2020). LCA of electrochemical reduction of CO2 to ethylene. Journal of CO2 Utilization, 41, 101229.Google Scholar
King, J. M., & O’Day, M. J. (2000). Applying fuel cell experience to sustainable power products. Journal of Power Sources, 86(1–2), 1622.CrossRefGoogle Scholar
Kuhl, K. P., Cave, E. R., Abram, D. N., & Jaramillo, T. F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science, 5(5), 70507059.Google Scholar
Küngas, R. (2020). Electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. Journal of the Electrochemical Society, 167(4), 044508.CrossRefGoogle Scholar
Lankof, L., & Tarkowski, R. (2020). Assessment of the potential for underground hydrogen storage in bedded salt formation. International Journal of Hydrogen Energy, 45(38), 1947919492.Google Scholar
Lessing, P. A. (2007). A review of sealing technologies applicable to solid oxide electrolysis cells. Journal of Materials Science, 42(10), 34653476.CrossRefGoogle Scholar
Liquide, A. (2017). USA: Air Liquide operates the world’s largest hydrogen storage facility. Air Liquide, 3. www.businesswire.com/news/home/20170103005930/en/USA-Air-Liquide-Operates-World%E2%80%99s-Largest-HydrogenGoogle Scholar
Mahato, N., Banerjee, A., Gupta, A., Omar, S., & Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141337.Google Scholar
May, K. (2021). Hydrogen from Chlor-Alkali Production: High Purity, Low Carbon and Available Today. Eurochlor. www.eurochlor.org/news/hydrogen-from-chlor-alkali-production/Google Scholar
Mench, M. M. (2008). Fuel Cell Engines. John Wiley & Sons.Google Scholar
Miura, D., & Tezuka, T. (2014). A comparative study of ammonia energy systems as a future energy carrier, with particular reference to vehicle use in Japan. Energy, 68, 428436.CrossRefGoogle Scholar
Møller, K. T., Jensen, T. R., Akiba, E., & Li, H. (2017). Hydrogen: A sustainable energy carrier. Progress in Natural Science: Materials International, 27(1), 3440.Google Scholar
Moradi, R., & Groth, K. M. (2019). Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 44(23), 1225412269.CrossRefGoogle Scholar
NIST Chemistry WebBook, SRD 69. (n.d.). NIST. https://webbook.nist.gov/cgi/cbook.cgi?Contrib=Google Scholar
Nöst, M., Doppler, C., Klell, M., & Trattner, A. (2018). Thermal management of PEM fuel cells in electric vehicles. In Comprehensive Energy Management-Safe Adaptation, Predictive Control and Thermal Management (pp. 93112). Springer.Google Scholar
Ogura, K. (2013). Electrochemical reduction of carbon dioxide to ethylene: Mechanistic approach. Journal of CO2 Utilization, 1, 4349.CrossRefGoogle Scholar
O’hayre, R., Cha, S.-W., Colella, W., & Prinz, F. B. (2016). Fuel Cell Fundamentals. John Wiley & Sons.Google Scholar
Ohi, J. M., Vanderborgh, N., Ahmed, S., Kumar, R., Papadius, D., & Rockward, T. (2016). Hydrogen Fuel Quality Specifications for Polymer Electrolyte Fuel Cells in Road Vehicles. Office of Energy Efficiency and Renewable Energy.Google Scholar
Olah, G. A. (2004). After oil and gas: methanol economy. Catalysis Letters, 93(1–2), 12.Google Scholar
Pan, J., Yang, J., Yan, D., Pu, J., Chi, B., & Li, J. (2020). Effect of thermal cycling on durability of a solid oxide fuel cell stack with external manifold structure. International Journal of Hydrogen Energy, 45(35), 1792717934.Google Scholar
Pattabathula, V., & Richardson, J. (2016). Introduction to ammonia production. CEP Magazine, 2, 6975.Google Scholar
Pivovar, B., Rustagi, N., & Satyapal, S. (2018). Hydrogen at scale (H2@ Scale): Key to a clean, economic, and sustainable energy system. The Electrochemical Society Interface, 27(1), 47.Google Scholar
Pletcher, D., & Walsh, F. C. (2012). Industrial Electrochemistry. Springer Science & Business Media.Google Scholar
Prasad, S. (2000). The principal problems of aluminum electrowinning: An update. Brazilian Journal of Chemical Engineering, 17(2), 211218.Google Scholar
Reifsnider, K., Ju, G., & Huang, X. (2007). Multiphysics concepts and foundations for durability and accelerated characterization of solid oxide fuel cells. ECS Transactions, 7(1), 469.CrossRefGoogle Scholar
Reiser, C. A., Bregoli, L., Patterson, T. W., Jung, S. Y., Yang, J. D., Perry, M. L. & Jarvi, T. D. (2005). A reverse-current decay mechanism for fuel cells. Electrochemical and Solid State Letters, 8(6), A273.Google Scholar
Rice, C. A. (2021). Subzero automotive fuel cells: Water fill tests vs cold-starts. Journal of the Electrochemical Society, 168(4), 044513.Google Scholar
Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1(1), 1029.Google Scholar
Sammes, N., Bove, R., & Stahl, K. (2004). Phosphoric acid fuel cells: Fundamentals and applications. Current Opinion in Solid State and Materials Science, 8(5), 372378.Google Scholar
Shaner, M. R., Atwater, H. A., Lewis, N. S., & McFarland, E. W. (2016). A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & Environmental Science, 9(7), 23542371.Google Scholar
Smith, J. M., Ness, H. C. V., Abbott, M. M., & Swihart, M. T. (2018). Introduction to Chemical Engineering Thermodynamics, Eight. McGraw-Hill Education.Google Scholar
Solasi, R., Huang, X., & Reifsnider, K. (2010). Creep and stress-rupture of Nafion® membranes under controlled environment. Mechanics of Materials, 42(7), 678685.Google Scholar
Spurgeon, J. M., & Kumar, B. (2018). A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy & Environmental Science, 11(6), 15361551.Google Scholar
Stamenkovic, V. R., Strmcnik, D., Lopes, P. P., & Markovic, N. M. (2017). Energy and fuels from electrochemical interfaces. Nature Materials, 16(1), 5769.CrossRefGoogle Scholar
Tremel, A., Wasserscheid, P., Baldauf, M., & Hammer, T. (2015). Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis. International Journal of Hydrogen Energy, 40(35), 1145711464.Google Scholar
Tullo, A. (2021). The search for greener ethylene. Chemical & Engineering News, 99(9), 2022.Google Scholar
Verma, S., Kim, B., Jhong, H., Ma, S., & Kenis, P. J. A. (2016). A gross‐margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem, 9(15), 19721979.Google Scholar
Wang, W., Luo, Q., Li, B., Wei, X., Li, L., & Yang, Z. (2013). Recent progress in redox flow battery research and development. Advanced Functional Materials, 23(8), 970986.Google Scholar
Whiston, M. M., Azevedo, I. L., Litster, S., Whitefoot, K. S., Samaras, C., & Whitacre, J. F. (2019). Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. Proceedings of the National Academy of Sciences, 116(11), 48994904.CrossRefGoogle ScholarPubMed
Wu, J., Yuan, X. Z., Martin, J. J., Wang, H., Zhang, J., Shen, J., Wu, S., & Merida, W. (2008). A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 184(1), 104119.CrossRefGoogle Scholar
Yokokawa, H. (2011). Current status of NEDO project on durability/reliability of solid oxide fuel cell stacks/systems. ECS Transactions, 35(1), 207.Google Scholar
Yokokawa, H., Horita, T., Yamaji, K., Kishimoto, H., & Brito, M. E. (2010). Materials chemical point of view for durability issues in solid oxide fuel cells. Journal of the Korean Ceramic Society, 47(1), 2638.Google Scholar
Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261–273.Google Scholar
Yuan, X. Z., Song, C., Platt, A., Zhao, N., Wang, H., Li, H., Fatih, K. & Jang, D. (2019). A review of all‐vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies. International Journal of Energy Research, 43(13), 65996638.Google Scholar
Zheng, K., Kuang, Y., Rao, Z., & Shen, S. (2019). Numerical study on the effect of bi-polar plate geometry in the SOFC heating-up process. Journal of Renewable and Sustainable Energy, 11(1), 014301.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×