Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- Part I Users and Conversion Devices
- 1 Aero Gas Turbines
- 2 Ground-Based Gas Turbines
- 3 Reciprocating Engines
- 4 Process Heaters
- 5 Fuel Cells and Hydrogen Production
- Part II Chemical Energy Carriers
- 6 Syngas and Biogas
- 7 Liquid Fuel Synthesis
- 8 Ammonia
- 9 Metal Fuels
- 10 Bio-based Solid Fuels
- Part III Fundamental Combustion Processes
- 11 Fundamentals of Gaseous Combustion
- 12 Liquid Fuel Atomization and Combustion
- 13 Pollutant Emissions of Alternative Fuels
- Part IV Case Studies
- 14 Certification of Drop-In Alternative Fuels for Aviation
- 15 Fuel Composition Influences on Reciprocating Engine Performance
- 16 Near-Zero- and Zero-Carbon Fuels in Industrial Gas Turbines
- 17 Hydrogen Solutions for Net-Zero Power Generation
- Index
3 - Reciprocating Engines
from Part I - Users and Conversion Devices
Published online by Cambridge University Press: 01 December 2022
- Frontmatter
- Contents
- Contributors
- Preface
- Part I Users and Conversion Devices
- 1 Aero Gas Turbines
- 2 Ground-Based Gas Turbines
- 3 Reciprocating Engines
- 4 Process Heaters
- 5 Fuel Cells and Hydrogen Production
- Part II Chemical Energy Carriers
- 6 Syngas and Biogas
- 7 Liquid Fuel Synthesis
- 8 Ammonia
- 9 Metal Fuels
- 10 Bio-based Solid Fuels
- Part III Fundamental Combustion Processes
- 11 Fundamentals of Gaseous Combustion
- 12 Liquid Fuel Atomization and Combustion
- 13 Pollutant Emissions of Alternative Fuels
- Part IV Case Studies
- 14 Certification of Drop-In Alternative Fuels for Aviation
- 15 Fuel Composition Influences on Reciprocating Engine Performance
- 16 Near-Zero- and Zero-Carbon Fuels in Industrial Gas Turbines
- 17 Hydrogen Solutions for Net-Zero Power Generation
- Index
Summary
Reciprocating internal combustion engines rely on a piston-cylinder configuration to achieve a batch periodic conversion from chemical energy in a fuel to mechanical energy leaving an engine. In this category of energy conversion devices are included spark-ignition (SI) engines which may operate on gaseous or liquid fuels, and compression-ignition (CI) engines which may operate on liquid or a combination of liquid and gaseous fuels. As described by Lichty, the first example of an internal combustion engine was that of Abbé Hautefueille in 1678 using the combustion of gunpowder in a cylinder to move a piston and produce work. Renewable fuels and bio-based chemicals and materials are nothing new. They have served humankind since the dawn of civilization. And that there would be changes in how we power our transportation systems is also nothing new.
- Type
- Chapter
- Information
- Renewable FuelsSources, Conversion, and Utilization, pp. 75 - 137Publisher: Cambridge University PressPrint publication year: 2022
- 1
- Cited by