Book contents
- Frontmatter
- Contents
- List of Contributors
- 1 Introduction
- 2 Integrated regional risk assessment and safety management: Challenge from Agenda 21
- 3 Risk analysis: The unbearable cleverness of bluffing
- 4 Aspects of uncertainty, reliability, and risk in flood forecasting systems incorporating weather radar
- 5 Probabilistic hydrometeorological forecasting
- 6 Flood risk management: Risk cartography for objective negotiations
- 7 Responses to the variability and increasing uncertainty of climate in Australia
- 8 Developing an indicator of a community's disaster risk awareness
- 9 Determination of capture zones of wells by Monte Carlo simulation
- 10 Controlling three levels of uncertainties for ecological risk models
- 11 Stochastic precipitation-runoff modeling for water yield from a semi-arid forested watershed
- 12 Regional assessment of the impact of climate change on the yield of water supply systems
- 13 Hydrological risk under nonstationary conditions changing hydroclimatological input
- 14 Fuzzy compromise approach to water resources systems planning under uncertainty
- 15 System and component uncertainties in water resources
- 16 Managing water quality under uncertainty: Application of a new stochastic branch and bound method
- 17 Uncertainty in risk analysis of water resources systems under climate change
- 18 Risk and reliability in water resources management: Theory and practice
- 19 Quantifying system sustainability using multiple risk criteria
- 20 Irreversibility and sustainability in water resources systems
- 21 Future of reservoirs and their management criteria
- 22 Performance criteria for multiunit reservoir operation and water allocation problems
- 23 Risk management for hydraulic systems under hydrological loads
13 - Hydrological risk under nonstationary conditions changing hydroclimatological input
Published online by Cambridge University Press: 18 January 2010
- Frontmatter
- Contents
- List of Contributors
- 1 Introduction
- 2 Integrated regional risk assessment and safety management: Challenge from Agenda 21
- 3 Risk analysis: The unbearable cleverness of bluffing
- 4 Aspects of uncertainty, reliability, and risk in flood forecasting systems incorporating weather radar
- 5 Probabilistic hydrometeorological forecasting
- 6 Flood risk management: Risk cartography for objective negotiations
- 7 Responses to the variability and increasing uncertainty of climate in Australia
- 8 Developing an indicator of a community's disaster risk awareness
- 9 Determination of capture zones of wells by Monte Carlo simulation
- 10 Controlling three levels of uncertainties for ecological risk models
- 11 Stochastic precipitation-runoff modeling for water yield from a semi-arid forested watershed
- 12 Regional assessment of the impact of climate change on the yield of water supply systems
- 13 Hydrological risk under nonstationary conditions changing hydroclimatological input
- 14 Fuzzy compromise approach to water resources systems planning under uncertainty
- 15 System and component uncertainties in water resources
- 16 Managing water quality under uncertainty: Application of a new stochastic branch and bound method
- 17 Uncertainty in risk analysis of water resources systems under climate change
- 18 Risk and reliability in water resources management: Theory and practice
- 19 Quantifying system sustainability using multiple risk criteria
- 20 Irreversibility and sustainability in water resources systems
- 21 Future of reservoirs and their management criteria
- 22 Performance criteria for multiunit reservoir operation and water allocation problems
- 23 Risk management for hydraulic systems under hydrological loads
Summary
ABSTRACT
Changing hydroclimatological conditions lead to changes in hydrological risk. Recent hydrological extremes such as floodings along the Rhine, Mississipi, or Oder Rivers can to a large extent be explained by the occurrence of unusual hydroclimatological extremes. Whether these extremes are part of natural variability, indicate possible climatic fluctuations, or are signals of an anthropogenically induced climate change is the first question to be answered. For this purpose, time series of different hydrological variables (atmospheric circulation patterns, rainfall, and runoff) are investigated. As hydrological risk is related to extremes, the series are investigated from that viewpoint, and not only from that of their mean behavior. Different statistical methods including nonparametric methods and bootstrap are applied to selected series to test the hypothesis of stationarity. Whenever this hypothesis is rejected, assumptions about the future have to be made. This can either be a scenario based on present trends, an assumption of stationarity at the present level, or a scenario based on a general circulation model (GCM). In the GCM case, due to the coarse resolution, a downscaling method is also needed. The next step is to assess the probabilities of extremes under these changes. It is demonstrated that areal precipitation extremes should be evaluated using not only precipitation amount but also duration and persistence of events. An example of extreme areal precipitation demonstrates this part of the methodology. On the basis of scenarios based either on present conditions or assumed trends, one may obtain a direct assessment of the flood risk. In contrast, GCM-based scenarios do not yield runoff values, thus a hydrological model has to be used to transform downscaled hydroclimatological series into runoff.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2002