Book contents
- Frontmatter
- Contents
- List of Contributors
- 1 Introduction
- 2 Integrated regional risk assessment and safety management: Challenge from Agenda 21
- 3 Risk analysis: The unbearable cleverness of bluffing
- 4 Aspects of uncertainty, reliability, and risk in flood forecasting systems incorporating weather radar
- 5 Probabilistic hydrometeorological forecasting
- 6 Flood risk management: Risk cartography for objective negotiations
- 7 Responses to the variability and increasing uncertainty of climate in Australia
- 8 Developing an indicator of a community's disaster risk awareness
- 9 Determination of capture zones of wells by Monte Carlo simulation
- 10 Controlling three levels of uncertainties for ecological risk models
- 11 Stochastic precipitation-runoff modeling for water yield from a semi-arid forested watershed
- 12 Regional assessment of the impact of climate change on the yield of water supply systems
- 13 Hydrological risk under nonstationary conditions changing hydroclimatological input
- 14 Fuzzy compromise approach to water resources systems planning under uncertainty
- 15 System and component uncertainties in water resources
- 16 Managing water quality under uncertainty: Application of a new stochastic branch and bound method
- 17 Uncertainty in risk analysis of water resources systems under climate change
- 18 Risk and reliability in water resources management: Theory and practice
- 19 Quantifying system sustainability using multiple risk criteria
- 20 Irreversibility and sustainability in water resources systems
- 21 Future of reservoirs and their management criteria
- 22 Performance criteria for multiunit reservoir operation and water allocation problems
- 23 Risk management for hydraulic systems under hydrological loads
16 - Managing water quality under uncertainty: Application of a new stochastic branch and bound method
Published online by Cambridge University Press: 18 January 2010
- Frontmatter
- Contents
- List of Contributors
- 1 Introduction
- 2 Integrated regional risk assessment and safety management: Challenge from Agenda 21
- 3 Risk analysis: The unbearable cleverness of bluffing
- 4 Aspects of uncertainty, reliability, and risk in flood forecasting systems incorporating weather radar
- 5 Probabilistic hydrometeorological forecasting
- 6 Flood risk management: Risk cartography for objective negotiations
- 7 Responses to the variability and increasing uncertainty of climate in Australia
- 8 Developing an indicator of a community's disaster risk awareness
- 9 Determination of capture zones of wells by Monte Carlo simulation
- 10 Controlling three levels of uncertainties for ecological risk models
- 11 Stochastic precipitation-runoff modeling for water yield from a semi-arid forested watershed
- 12 Regional assessment of the impact of climate change on the yield of water supply systems
- 13 Hydrological risk under nonstationary conditions changing hydroclimatological input
- 14 Fuzzy compromise approach to water resources systems planning under uncertainty
- 15 System and component uncertainties in water resources
- 16 Managing water quality under uncertainty: Application of a new stochastic branch and bound method
- 17 Uncertainty in risk analysis of water resources systems under climate change
- 18 Risk and reliability in water resources management: Theory and practice
- 19 Quantifying system sustainability using multiple risk criteria
- 20 Irreversibility and sustainability in water resources systems
- 21 Future of reservoirs and their management criteria
- 22 Performance criteria for multiunit reservoir operation and water allocation problems
- 23 Risk management for hydraulic systems under hydrological loads
Summary
ABSTRACT
The problem of water quality management under uncertain emission levels, reaction rates, and pollutant transport is considered. Three performance measures – reliability, resiliency, and vulnerability – are taken into account. A general methodology for finding a cost-effective water quality management program is developed. The approach employs a new stochastic branch and bound method that combines random estimates of the performance for subsets of decisions with iterative refinement of the most promising subsets.
INTRODUCTION
Devising successful and cost-effective water quality management strategies can be difficult because the inputs to, and the behavior of, the system being managed are never entirely predictable. Decision makers do not know what conditions will exist in the future nor how these conditions will affect the impact of their decisions on the environment. Vincens, Rodriguez-Iturbe, and Schaake (1975) classify uncertainty in modeling hydrologic systems into three categories: uncertainty in the model structure (Type I uncertainty); uncertainty in the model parameters (Type II uncertainty); and uncertainty resulting from natural variability (Type III uncertainty). For water quality systems, uncertainty in the pollutant transport model, the model reaction rates, and the natural variability of emission rates and receiving water conditions, such as streamflow, temperature, and background pollutant loadings from unregulated pollution sources, contribute to difficulties in predicting the future behavior of the system (Beck 1987). This chapter develops an approach for identifying water quality management solutions under Type II and Type III uncertainty. It is based on an application of the stochastic branch and bound method of Norkin, Ermoliev, and Ruszczyński (1994) to water quality management, which is modified to account for the performance indicators of reliability, resiliency, and vulnerability.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2002