Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T09:48:14.821Z Has data issue: false hasContentIssue false

7 - Derivation of the effective Hamiltonian

Published online by Cambridge University Press:  17 December 2010

John M. Brown
Affiliation:
University of Oxford
Alan Carrington
Affiliation:
University of Southampton
Get access

Summary

Introduction

The Born–Oppenheimer approximation is an important linch pin in the description of molecular energy levels. It reveals the difference between electronic and nuclear motions in a molecule, as a result of which we expect the separation between different electronic states to be much larger than that between vibrational levels within an electronic state. An extension of these ideas shows that the separation between vibrational levels is correspondingly larger than the separation between the rotational levels of a molecule. We thus have a hierarchy of energy levels which reveals itself in the electronic, vibrational and rotational structure of molecular spectra. This gradation in the magnitude of the different types of quanta also provides the inspiration for an energy operator known as the effective Hamiltonian.

In this chapter we introduce and derive the effective Hamiltonian for a diatomic molecule. The effective Hamiltonian operates only within the levels (rotational, spin and hyperfine) of a single vibrational level of the particular electronic state of interest. It is derived from the full Hamiltonian described in the previous chapters by absorbing the effects of off-diagonal matrix elements, which link the vibronic level of interest to other vibrational and electronic states, by a perturbation procedure. It has the same eigenvalues as the full Hamiltonian, at least to within some prescribed accuracy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Born, M. and Oppenheimer, R., Ann. Phys., 84, 4571 (1927)
Vleck, J. H., Rev. Mod. Phys., 23, 213 (1951)CrossRef
Pryce, M. H. L., Proc. Phys. Soc., A63, 25 (1950)CrossRef
Griffith, J. S., Mol. Phys., 3, 79 (1960)CrossRef
Miller, T. A., Mol. Phys., 16, 105 (1969)CrossRef
Santis, D., Lurio, A., Miller, T. A. and Freund, R. S., J. Chem. Phys., 58, 4625 (1972)CrossRef
Brown, J. M., Colbourn, E. A., Watson, J. K. G. and Wayne, F. D., J. Mol. Spectrosc., 74, 294 (1979)CrossRef
Bloch, C., Nucl. Phys., 6, 329 (1958)CrossRef
Soliverez, C. E., J. Phys. C., 2, 2161 (1969)CrossRef
H. Lefebvre-Brion and R. W. Field, Perturbations in the Spectra of Diatomic Molecules, Academic Press, Inc., Orlando, 1986
M. R. Aliev and J. K. G. Watson, Molecular Spectroscopy: Modern Research, ed. K. N. Rao, 3, 2, 1985
Vleck, J. H., Phys. Rev., 33, 467 (1929)CrossRef
E. C. Kemble, The Fundamental Principles of Quantum Mechanics, Dover, New York, 1958
E. P. Wigner, Group Theory, Academic Press, New York, 1959
Hougen, J. T., J. Chem. Phys., 36, 519 (1962)CrossRef
Veseth, L., Theor. Chim. Acta, 18, 368 (1970)CrossRef
Brown, J. M. and Watson, J. K. G., J. Mol. Spectrosc., 65, 65 (1977)CrossRef
Mulliken, R. S. and Christy, A., Phys. Rev., 38, 87 (1931)CrossRef
Hougen, J. T., Can. J. Phys., 40, 598 (1962)CrossRef
Brown, J. M. and Milton, D. J., Mol. Phys., 31, 409 (1976)CrossRef
Nelis, T., Brown, J. M. and Evenson, K. M., J. Chem. Phys., 92, 4067 (1990)CrossRef
Watson, J. K. G., J. Mol. Spectrosc., 74, 319 (1979)CrossRef
Dunham, J. L., Phys. Rev., 41, 721 (1932)CrossRef
Brown, J. M., Milton, D. J., Watson, J. K. G., Zare, R. N., Albritton, D. L., Horani, M. and Rostas, J., J. Mol. Spectrosc., 89, 139 (1981)CrossRef
Watson, J. K. G., J. Mol. Spectrosc., 45, 99 (1973)CrossRef
Bunker, P. R., J. Mol. Spectrosc., 68, 367 (1977)CrossRef
Watson, J. K. G., J. Mol. Spectrosc., 80, 411 (1980)CrossRef
Vleck, J. H., J. Chem. Phys., 4, 327 (1936)CrossRef
Miller, T. A., J. Chem. Phys., 54, 330 (1971)CrossRef
Brown, J. M., Kaise, M., Kerr, C. L. M. and Milton, D. J., Mol. Phys., 36, 553 (1978)CrossRef
Brown, J. M. and Uehara, H., Mol. Phys., 24, 1169 (1972)CrossRef
Brown, J. M., Buenker, R. J., Carrington, A., Lauro, C. Di, Dixon, R. N., Field, R. W., Hougen, J. T., Hüttner, W., Kuchitsu, K., Mehring, M., Merer, A. J., Miller, T. A., Quack, M., Ramsay, D. A., Veseth, L. and Zare, R. N., Mol. Phys., 98, 1597 (2000)CrossRef
Veseth, L., J. Mol. Spectrosc., 38, 228 (1971)CrossRef
Tamassia, F., Brown, J. M. and Evenson, K. M., J. Chem. Phys., 110, 7273 (1999)CrossRef
Tamassia, F., Brown, J. M. and Watson, J. K. G., Mol. Phys., 100, 3485 (2002)CrossRef
Dixon, R. N. and Kroto, H. W., Trans. Faraday Soc., 59, 1484 (1963)CrossRef
Brown, J. M., Byfleet, C. R., Howard, B. J. and Russell, D. K., Mol. Phys., 23, 457 (1972)CrossRef
Wilson, C., Cook, H. M. and Brown, J. M., J. Chem. Phys., 115, 5943 (2001)CrossRef
Kayama, K. and Baird, J. C., J. Chem. Phys., 46, 2604 (1967)CrossRef
Wayne, F. D. and Colbourne, E. A., Mol. Phys., 34, 1141 (1977)CrossRef
Hinkley, R. K., Hall, J. A., Walker, T. E. H. and Richards, W. G., J. Phys. B., 5, 204 (1972)CrossRef
Harvey, J. S. M., Proc. R. Soc. Lond., A285, 581 (1965)CrossRef
Brown, J. M., Schubert, J. E., Saykally, R. J. and Evenson, K. M., J. Mol. Spectrosc., 120, 421 (1986)CrossRef
Appelbad, O., Renhorn, I., Dulick, M., Purnell, M. R. and Brown, J. M., Physica Scripta, 28, 539 (1983)CrossRef
Raftery, J., Scott, P. R. and Richards, W. G., J. Phys., B5, 1293 (1972)
Carrington, A. and Lucas, N. J. D., Proc. R. Soc. Lond., A314, 567 (1970)CrossRef
Townes, C. H. and Dailey, B. P., J. Chem. Phys., 17, 782 (1949)CrossRef
Townes, C. H. and Dailey, B. P., J. Chem. Phys., 23, 118 (1955)
W. Gordy and R. L. Cook, Microwave Molecular Spectroscopy, Interscience, New York, 1970
Cohen, E. A., Pickett, H. M. and Geller, M., J. Mol. Spectrosc., 106, 4301 (1984)CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×