Published online by Cambridge University Press: 05 July 2011
In a recent memoir Mr Love has considered this question among others; but he has not discussed his result {equation (95)}, except in its application to a rather special case involving the existence of a free edge. When the cylinder is regarded as infinitely long, the problem is naturally of a simpler character; and I have thought that it might be worth while to express more fully the frequency equation, as applicable to all vibrations, independent of the thickness of the shell, which are periodic with respect both to the length and the circumference of the cylinder.
In order to prevent misunderstanding, it may be well to premise that the vibrations, whose frequency is to be determined, do not include the gravest of which a thin shell is capable. If the middle surface be simply bent, the potential energy of deformation is of a higher order of magnitude than in the contrary case, and according to the present method of treatment the frequency of vibration will appear to be zero. It is known, however, that the only possible modes of bending of a cylindrical shell are such as are not periodic along the length, or rather have the wave-length in this direction infinitely long. When the middle surface is stretched, as well as bent, the potential energy of bending may be neglected, except in certain very special cases.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.