Published online by Cambridge University Press: 07 October 2011
§1. A tale of two problems. The formal independence of Cantor' Continuum Hypothesis from the axioms of Set Theory (ZFC) is an immediate corollary of the following two theorems where the statement of the Cohen's theorem is recast in the more modern formulation of the Boolean valued universe.
Theorem 1 (Gödel, [3]). Assume V = L. Then the Continuum Hypothesis holds.
Theorem 2 (Cohen, [1]). There exists a complete Boolean algebra, B, such that
VB ⊨ “The Continuum Hypothesis is false”.
Is this really evidence (as is often cited) that the Continuum Hypothesis has no answer?
Another prominent problem from the early 20th century concerns the projective sets, [8]; these are the subsets of ℝn which are generated from the closed sets in finitely many steps taking images by continuous functions, f : ℝn → ℝn, and complements. A function, f : ℝ → ℝ, is projective if the graph of f is a projective subset of ℝ × ℝ. Let Projective Uniformization be the assertion:
For each projective set A ⊂ ℝ × ℝ there exists a projective function, f : ℝ → ℝ, such that for all x ∈ ℝ if there exists y ∈ ℝ such that (x, y) ∈ A then (x, f(x)) ∈ A.
The two theorems above concerning the Continuum Hypothesis have versions for Projective Uniformization. Curiously the Boolean algebra for Cohen's theorem is the same in both cases, but in case of the problem of Projective Uniformization an additional hypothesis on V is necessary. While Cohen did not explicitly note the failure of Projective Uniformization, it is arguably implicit in his results.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.