Published online by Cambridge University Press: 07 October 2011
Abstract. Finite set theory, here denoted ZFfin, is the theory obtained by replacing the axiom of infinity by its negation in the usual axiomatization of ZF (Zermelo-Fraenkel set theory). An ω-model of ZFfin is a model in which every set has at most finitely many elements (as viewed externally). Mancini and Zambella (2001) employed the Bernays-Rieger method of permutations to construct a recursive ω-model of ZFfin that is nonstandard (i.e., not isomorphic to the hereditarily finite sets Vω). In this paper we initiate the metamathematical investigation of ω-models of ZFfin. In particular, we present a new method for building ω-models of ZFfin that leads to a perspicuous construction of recursive nonstandard ω-models of ZFfin without the use of permutations. Furthermore, we show that every recursive model of ZFfin is an ω-model. The central theorem of the paper is the following:
Theorem A. For every graph (A, F), where F is a set of unordered pairs of A, there is an ω-model m of ZFfin whose universe contains A and which satisfies the following conditions:
(1) (A, F) is definable in m;
(2) Every element of m is definable in (m, a)a ∈ A;
(3) If (A, F) is pointwise definable, then so is m;
(4) Aut(m) ≅ Aut(A, F).
Theorem A enables us to build a variety of ω-models with special features, in particular:
Corollary 1. Every group can be realized as the automorphism group of an ω-model of ZFfin.
Corollary 2. For each infinite cardinal κ there are 2κrigid nonisomorphic ω-models of ZFfinof cardinality κ. […]
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.