Published online by Cambridge University Press: 07 October 2011
Abstract. This paper discusses Tennenbaum's Theorem in its original context of models of arithmetic, which states that there are no recursive nonstandard models of Peano Arithmetic. We focus on three separate areas: the historical background to the theorem; an understanding of the theorem and its relationship with the Gödel–Rosser Theorem; and extensions of Tennenbaum's theorem to diophantine problems in models of arthmetic, especially problems concerning which diophantine equations have roots in some model of a given theory of arithmetic.
§ 1.Some historical background. The theorem known as “Tennenbaum's Theorem” was given by Stanley Tennenbaum in a paper at the April meeting in Monterey, California, 1959, and published as a one-page abstract in the Notices of the American Mathematical Society [28]. It is easily stated as saying that there is no nonstandard recursive model of Peano Arithmetic, and is an attractive and rightly often-quoted result.
This paper celebrates Tennenbaum's Theorem; we state the result fully and give a proof of it andother related results later. This introduction is in the main historical. The goals of the latter parts of this paper are: to set out the connections between Tennenbaum's Theorem for models of arithmetic and the Gödel–Rosser Theorem and recursively inseparable sets; and to investigate stronger versions of Tennenbaum's Theorem and their relationship to some diophantine problems in systems of arithmetic.
Tennenbaum's theorem was discovered in a period of foundational studies, associated particularly with Mostowski, where it still seemed conceivable that useful independence results for arithmetic could be achieved by a “handson” approach to building nonstandard models of arithmetic.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.