Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T11:50:42.605Z Has data issue: false hasContentIssue false

12 - Further Divergence: the Role of Ecology and Behaviour

Published online by Cambridge University Press:  01 March 2019

Jeremy B. Searle
Affiliation:
Cornell University, New York
P. David Polly
Affiliation:
Indiana University
Jan Zima
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banaszek, A., Fedyk, S., Szałaj, K. A., and Chętnicki, W. (2000). A comparison of spermatogenesis in homozygotes, simple Robertsonian heterozygotes and complex heterozygotes of the common shrew (Sorex araneus). Heredity, 84, 570–7.Google Scholar
Barton, N. H. and Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113–68.CrossRefGoogle Scholar
Brünner, H. and Hausser, J. (1996). Genetic and karyotypic structure of a hybrid zone between chromosome races Cordon and Valais in the common shrew, Sorex araneus. Hereditas, 125, 147–58.Google Scholar
Brünner, H., Lugon-Moulin, N., and Hausser, J. (2002). Alps, genes, and chromosomes: their role in the formation of species in the Sorex araneus group (Mammalia, Insectivora), as inferred from two hybrid zones. Cytogenetic and Genome Research, 96, 8596.Google Scholar
Brünner, H. and Neet, C. R. (1991). A parapatric scenery – the distribution and ecology of Sorex araneus and S. coronatus (Insectivora, Soricidae) in southwestern Germany. Zeitschrift für Säugetierkunde, 56, 19.Google Scholar
Buffon, , Comte de, G. L. Leclerc. (1753). Histoire Naturelle Générale et Particulière, avec la Description du Cabinet du Roy, vol. 4. Paris: Imprimerie royale.Google Scholar
Bulatova, N., Jones, R. M., White, T. A., et al. (2011): Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in European Russia. Journal of Evolutionary Biology, 24, 573–86.Google Scholar
Bulatova, N. S., Searle, J. B., Bystrakova, N. V., et al. (2000). The diversity of chromosome races in Sorex araneus from European Russia. Acta Theriologica, 45 (Suppl. 1), 3346.Google Scholar
Bulatova, N. S., Shchipanov, N. A., and Searle, J. B. (2007). The Seliger Moscow hybrid zone between chromosome races of common shrews – an initial description. Russian Journal of Theriology, 6, 111–16.Google Scholar
Bystrakova, N. V., Bulatova, N. S., Kovalskaya, Y. M., et al. (2003). Geographical limits of chromosome races of the common shrew Sorex araneus L. in the Middle Volga (East European Russia). Mammalia, 67, 187–91.Google Scholar
Bystrakova, N. V., Bulatova, N. S., Shchipanov, N. A., et al. (2007). New data on the geographic distribution of chromosome races of Sorex araneus (Mammalia: Soricidae) in European Russia: expected contact zones of European Russian chromosome races. Russian Journal of Theriology, 6, 105–9.Google Scholar
Cantoni, D. (1993). Social and spatial organization of free-ranging shrews, Sorex coronatus and Neomys fodiens (Insectivora, Mammalia). Animal Behaviour, 45, 975–95.CrossRefGoogle Scholar
Cantoni, D. and Rivier, L. (1992). Analysis of the secretions from the flank glands of 3 shrew species and their possible functions in a social context. In Chemical Signals in Vertebrates VI, ed. Doty, R. L. and Muller-Schwarze, D.. New York: Plenum, pp. 99106.Google Scholar
Castagné, C., Mehmeti, A. M., and Hausser, J. (1994). Interbreeding between alpine races of the common shrew Sorex araneus (Insectivora, Mammalia). Caryologia, 47, 1118.Google Scholar
Chmátal, L., Gabriel, S. I., Mitsainas, G. P., et al. (2014). Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Current Biology, 24, 22953000.Google Scholar
Churchfield, S., Nesterenko, V. A., and Shvarts, E. A. (1999). Food niche overlap and ecological separation amongst six species of coexisting forest shrews (Insectivora: Soricidae) in the Russian Far East. Journal of Zoology, 248, 349–59.Google Scholar
Churchfield, S., Sheftel, B. I., Moraleva, N. V., and Shvarts, E. A. (1997). Habitat occurrence and prey distribution of a multi-species community of shrews in the Siberian taiga. Journal of Zoology, 241, 5571.Google Scholar
Dickman, C. R. (1991). Mechanisms of competition among insectivorous mammals. Oecologia, 85, 464–71.Google Scholar
Dokuchaev, N. E. (1990). Ecology of Shrews in North-East Asia. Moscow: Nauka. (In Russian, with English summary).Google Scholar
Ellenbroek, F. J. M. (1980). Interspecific interactions in the shrews Sorex araneus and Sorex minutus: a population study of the Irish pygmy shrew. Journal of Zoology, 192, 119–36.Google Scholar
Fedyk, S. and Chętnicki, W. (2007). Preferential transmission of metacentric chromosomes in simple Robertsonian heterozygotes of Sorex araneus. Heredity, 99, 545–52.CrossRefGoogle ScholarPubMed
Fumagalli, L., Taberlet, P., Stewart, D. T., et al. (1999). Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 11, 222–35.CrossRefGoogle ScholarPubMed
Gilliéron, J. and Morel, J. (2018). Atlas des mammifères terrestres du bassin genevois. Geneva: Editions Faune Genève.Google Scholar
Hanski, I., Peltonen, A., and Kaski, L. (1991). Natal dispersal and social dominance in the common shrew Sorex araneus. Oikos, 62, 4858.CrossRefGoogle Scholar
Hausser, J. (1978). Répartition en Suisse et en France de Sorex araneus L., 1758 et de Sorex coronatus Millet, 1828 (Mammalia, Insectivora). Mammalia, 42, 329–41.CrossRefGoogle Scholar
Hausser, J. (1984). Genetic drift and selection: their respective weights in the morphological and genetic differentiation of four species of shrews in Southern Europe (Insectivora, Soricidae). Zeitschrift für zoologische Systematik und Evolutions-forschung, 22, 302–20.Google Scholar
Hawes, M. L. (1976). Odor as a possible isolating mechanism in sympatric species of shrews (Sorex vagrans and Sorex obscurus). Journal of Mammalogy, 57, 404–6.Google Scholar
Hawes, M. L. (1977). Home range, territoriality and ecological separation in sympatric shrews, Sorex vagrans and Sorex obscurus. Journal of Mammalogy, 58, 354–67.Google Scholar
Hewitt, G. M. (1988). Hybrid zones – natural laboratories for evolutionary studies. Trends in Ecology and Evolution, 3, 158–67.Google Scholar
Jones, R. M. and Searle, J. B. (2003). Mapping the course of the Oxford–Hermitage chromosomal hybrid zone in the common shrew (Sorex araneus) – a GIS approach. Mammalia, 67, 193200.CrossRefGoogle Scholar
Kalinin, A. A. and Kupriyanova, I. F. (2015). Methodology of number registration of small mammals during the migration across water obstacles. Zoologicheskii Zhurnal, 94, 365–9. (In Russian, with English summary).Google Scholar
Karulin, B. E., Khlyap, L. A., Nikitina, N. A., et al. (1974). Activity and use of refuges in the common shrew (from observations on animals labelled with radioactive cobalt). Bulletin of the Moscow Society of Naturalists (MOIP), Biological Section, 79, 6572. (In Russian).Google Scholar
Khlyap, L. A. (1980). Shrews. In Approaches to Tracking of Mammals, ed. Sokolov, V. E.. Moscow: Nauka, pp. 6776. (In Russian).Google Scholar
Krushinska, N. L. and Pucek, Z. (1989). Ethological study of sympatric species of European water shrews. Acta Theriologica, 34 , 269–85.Google Scholar
Krushinska, N. L., Rychlik, L., and Pucek, Z. (1994). Agonistic interactions between resident and immigrant sympatric water shrews: Neomys fodiens and N. anomalus. Acta Theriologica 39, 227–47.CrossRefGoogle Scholar
Lamarck, J. B. (1809 ). Philosophie Zoologique, vol. 1, chapter 7. Paris: Dentu.Google Scholar
Lugon-Moulin, N., Balloux, F., and Hausser, J. (2000). Genetic differentiation of common shrew Sorex araneus populations among different alpine valleys revealed by microsatellites. Acta Theriologica, 45 (Suppl. 1), 103–17.Google Scholar
Lugon-Moulin, N. and Hausser, J. (2002). Phylogeographical structure, postglacial recolonization and barriers to gene flow in the distinctive Valais chromosome race of the common shrew (Sorex araneus). Molecular Ecology, 11, 785–94.Google Scholar
Mackiewicz, P., Moska, M., Wierzbicki, H., Gagat, P., and Mackiewicz, D. (2017). Evolutionary history and phylogeographic relationships of shrews from Sorex araneus group. PLoS ONE, 12, e0179760.Google Scholar
Meinig, V. H. (2000). Habitat choice of the sibling species Sorex araneus and Sorex coronatus (Insectivora, Soricidae) in northwestern Germany. Zeitschrift für Säugetierkunde, 65, 6575.Google Scholar
Mercer, S. J. (1991). Chromosomal Variation of the Common Shrew Sorex araneus in Britain. PhD dissertation, University of Oxford.Google Scholar
Mercer, S. J. and Searle, J. B. (1991). Preliminary analysis of a contact zone between karyotypic races of the common shrew (Sorex araneus) in Scotland. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 73–8.Google Scholar
Moraleva, N. V. (1989). Intraspecific interaction in the common shrew Sorex araneus in central Siberia. Annales Zoologici Fennici, 26, 425–32.Google Scholar
Moraleva, N. V. and Telitzina, A. Y. (1994). Territoriality in juveniles of the common shrew (Sorex araneus) in prepeak and peak years of population density. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 6776.Google Scholar
Murariu, D. (1971). Contribution à la connaissance du système glandulaire chez Sorex araneus araneus L. et Talpa europaea L. (Mammalia, Ord. Insectivora). Travaux du Museum d’Histoire Naturelle ‘Grigore Antipa’, 11, 429–35.Google Scholar
Murariu, D. (1974). L’histologie des glandes plantaires chez les Mammifères Insectivores de Roumanie. Travaux du Museum d’Histoire Naturelle ‘Grigore Antipa’, 15 , 381–96.Google Scholar
Narain, Y. and Fredga, K. (1996). A hybrid zone between the Hällefors and Uppsala chromosome races of Sorex araneus in central Sweden. Hereditas, 125, 137–45.Google Scholar
Naumov, N. P. (1973). Signal biological fields and their significance for animals. Zhurnal Obshchei Biologii, 6 , 808–17. (In Russian).Google Scholar
Neet, C. R. (1989a). Evaluation de la territorialité interspécifique entre Sorex araneus et Sorex coronatus dans une zone de syntopie (Insectivora, Soricidae). Mammalia, 53 , 329–35.Google Scholar
Neet, C. R. (1989b). Ecologie Comparée et Biogéographie Évolutive de Deux Espèces Parapatriques: Sorex araneus et Sorex coronatus (Mammalia, Insectivora, Soricidae). PhD dissertation, University of Lausanne.Google Scholar
Neet, C. R. and Hausser, J. (1989). Chromosomal rearrangements, speciation and reproductive isolation: the example of two karyotypic species of the genus Sorex. Journal of Evolutionary Biology, 2, 373–8.Google Scholar
Neet, C. R. and Hausser, J. (1990). Habitat selection in zones of parapatric contact between the common shrew Sorex araneus and Millet’s shrew S. coronatus. Journal of Animal Ecology, 59, 235–50.Google Scholar
Oleinitchenko, V. Y. (1994). The Spatial-Ethological Structure of the White-Belly (Crocidura leucodon) and Dwarf (C. suaveolens) White-Toothed Shrew Populations. PhD dissertation, Moscow State University. (In Russian).Google Scholar
Orlov, V. N. and Borisov, Y. M. (2007). Chromosome races of the common shrew Sorex araneus Linnaeus, 1758 (Mammalia: Insectivora) from the south part of Valdai Heights (Russia). Comparative Cytogenetics, 1, 101–6.Google Scholar
Orlov, V. N., Kozlovsky, A. I., Okulova, N. M., and Balakirev, A. E. (2007). Postglacial recolonisation of European Russia by the common shrew Sorex araneus L. (Insectivora, Mammalia). Russian Journal of Theriology, 6, 97104.CrossRefGoogle Scholar
Parapanov, R., Nusslé, A., Hausser, J., and Vogel, P. (2008). Relationships of basal metabolic rate, relative testis size and cycle length of spermatogenesis in shrews (Mammalia, Soricidae). Reproduction, Fertility and Development, 20, 431–9.Google Scholar
Pernetta, J. C. (1977). Population ecology of British shrews in grassland. Acta Theriologica, 22, 279–96.Google Scholar
Polyakov, A. V., Onischenko, S. S., Ilyashenko, V. B., Searle, J. B., and Borodin, P. M. (2002). Morphometric difference between the Novosibirsk and Tomsk races of Sorex araneus in a zone of parapatry. Acta Theriologica, 47, 381–7.CrossRefGoogle Scholar
Polyakov, A. V., Volobuev, V. T., Aniskin, V. M., et al. (2003). Altitudinal partitioning of two chromosome races of the common shrew (Sorex araneus) in West Siberia. Mammalia, 67, 201–7.Google Scholar
Polyakov, A. V., Volobouev, V. T., Borodin, P. M., and Searle, J. B. (1996). Karyotypic races of the common shrew (Sorex araneus) with exceptionally large ranges: the Novosibirsk and Tomsk races of Siberia. Hereditas, 125, 109–15.Google Scholar
Polyakov, A. V., Zima, J., Banaszek, A., Searle, J. B., and Borodin, P. M. (2000a). New chromosome races of the common shrew Sorex araneus from Eastern Siberia. Acta Theriologica, 45 (Suppl. 1), 1117.Google Scholar
Polyakov, A. V., Zima, J., Searle, J. B., Borodin, P. M., and Ladygina, T.Y. (2000b). Chromosome races of the common shrew Sorex araneus in the Ural Mts: a link between Siberia and Scandinavia? Acta Theriologica, 45 (Suppl. 1), 1926.Google Scholar
Rychlik, L. (1998). Evolution of social systems in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 347406.Google Scholar
Searle, J. B. (1986). Preferential transmission in wild common shrews (Sorex araneus), heterozygous for Robertsonian rearrangements. Genetical Research, 47 , 147–8.Google Scholar
Searle, J. B. and Wójcik, J. M. (1998). Chromosomal evolution: the case of Sorex araneus. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 219–68.Google Scholar
Shchipanov, N. A. (2007). Understanding the boundaries between chromosome races of common shrews in terms of restricted movement by individual shrews. Russian Journal of Theriology, 6, l17–22.Google Scholar
Shchipanov, N. A., Kuptsov, A. V., Demidova, T. B., et al. (2008a). Nonresidence and dispersal of common shrews (Sorex araneus, Insectivora). Zoologicheskii Zhurnal, 87, 331–43. (In Russian, with English summary).Google Scholar
Shchipanov, N. A., Bulatova, N. S., and Pavlova, S. V. (2008b). Distribution of two chromosome races of the common shrew (Sorex araneus L.) in the hybrid zone: can a change of the dispersal mode maintain independent gene frequencies? Russian Journal of Genetics, 44, 635–45.Google Scholar
Shchipanov, N. A., Bulatova, N. S., Pavlova, S. V., and Shchipanov, A. N. (2009). The common shrew (Sorex araneus) as a model species for ecological and evolutionary studies. Zoologicheskii Zhurnal, 88, 975–89. (In Russian, with English summary).Google Scholar
Shchipanov, N. A. and Pavlova, S.V. (2013). Contact zones and ranges of chromosomal races of the common shrew, Sorex araneus, in northeastern European Russia. Folia Zoologica, 62, 2435.Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2016). Multilevel subdivision in the “araneus” species group of the genus Sorex. 1. Chromosomal differentiation. Zoologicheskii Zhurnal, 95 , 216–33. (In Russian, with English summary).Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2017). Density-dependent processes determine the distribution of chromosomal races of the common shrew Sorex araneus (Lipotyphla, Mammalia). Mammal Research, 62, 267–82.CrossRefGoogle Scholar
Sheftel, B. I. (1983). Zonal characteristics of the community of insectivorous mammals of the Yenisei taiga and forest-tundra. In Animals of the Yenisei Taiga and Forest-Tundra, ed. Syroechkovskii, E. E.. Moscow: Nauka, pp. 184203. (In Russian).Google Scholar
Sheftel, B. I. (2005). Distribution of different size groups of red-toothed shrews (Sorex) in the Palearctic Region. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B. I.. New York: Special Publication of the International Society of Shrew Biologists, No. 1, pp. 167–77.Google Scholar
Sheftel, B. I., Demidova, T. B., and Burskaya, V. O. (2016). Western Siberia rivers and the boundaries between chromosomal races of the common shrew (Sorex araneus L. Lipotyphla, Mammalia). Doklady Biological Sciences, 471, 296–99.Google Scholar
Shurtliff, Q. R. (2013). Mammalian hybrid zones: a review. Mammal Review, 43, 121.Google Scholar
Stockley, P., Searle, J. B., Macdonald, D. W., and Jones, C. S. (1994). Alternative reproductive tactics in male common shrews: relationships between mate-searching behaviour, sperm production, and reproductive success as revealed by DNA fingerprinting. Behavioural Ecology and Sociobiology, 34, 71–8.Google Scholar
Stockley, P., Searle, J. B., Macdonald, D. W., and Jones, C. S. (1996). Correlates of reproductive success within alternative mating tactics of the common shrew. Behavioural Ecology, 7, 334–40.Google Scholar
Szałaj, K., Fedyk, S., Banaszek, A., Chętnicki, W., and Ratkiewicz, M. (1996). A hybrid zone between two chromosome races of the common shrew, Sorex araneus, in eastern Poland: preliminary results. Hereditas, 125, 169–76.Google Scholar
Tegelström, H. and Hansson, L. (1987). Evidence of long dispersal in the common shrew (Sorex araneus). Zeitschrift für Säugetierkunde, 52, 52–4.Google Scholar
Wiesinger, T. and Adams, M. (2007). Schnee und Lawinen in den Schweizer Alpen. Winter 1998/1999. Wetter, Schneedecke und Lawinengefahr. Winterbericht SLF. Davos: Eidg. Institut für Schnee und Lawinenforschung SLF.Google Scholar
Wójcik, J. M. (1991). Chromosomal polymorphism in the common shrew Sorex araneus and its adaptive significance. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 5162.Google Scholar
Wójcik, J. M., Bogdanowicz, W., Pucek, Z., Wójcik, A. M., and Zalewska, H. (2000). Morphometric variation of the common shrew Sorex araneus in Poland, in relation to karyotype. Acta Theriologica, 45 (Suppl. 1), 161–72.Google Scholar
Wójcik, J. M., Wójcik, A. M., and Zalewska, H. (1996). Chromosome and allozyme variation of the common shrew, Sorex araneus in different habitats. Hereditas, 125, 183–9.Google Scholar
Wyttenbach, A., Borodin, P. M., and Hausser, J. (1998). Meiotic drive favors Robertsonian metacentric chromosomes in the common shrew (Sorex araneus, Insectivora, Mammalia). Cytogenetics and Cell Genetics, 83, 199206.Google Scholar
Yannic, G., Basset, P., and Hausser, J. (2008). Phylogeography and recolonization of the Swiss Alps by the Valais shrew (Sorex antinorii), inferred with autosomal and sex-specific markers. Molecular Ecology, 17, 4118–33.Google Scholar
Yannic, G., Basset, P., and Hausser, J. (2009). Chromosomal rearrangements and gene flow over time in an inter-specific hybrid zone of the Sorex araneus group. Heredity, 102, 616–25.Google Scholar
Zaitsev, M. V., Voyta, L. L., and Sheftel, B. I. (2014). The Mammals of Russia and Adjacent Territories. Lipotyphlans. St Petersburg: Nauka. (In Russian).Google Scholar
Zima, J., Slivková, L., and Tomášková, L. (2003). New data on karyotypic variation in the common shrew from the Czech Republic: an extension of the range of the Laska race. Mammalia, 67, 209–15.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×