Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T14:50:52.923Z Has data issue: false hasContentIssue false

10 - Geometric Morphometric Tests for Phenotypic Divergence Between Chromosomal Races

Published online by Cambridge University Press:  01 March 2019

Jeremy B. Searle
Affiliation:
Cornell University, New York
P. David Polly
Affiliation:
Indiana University
Jan Zima
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, R. R., Rogers, J., and Cheverud, J. M. (2006). Identifying the morphological signatures of hybridization in primate and human evolution. Journal of Human Evolution, 51, 632–45.CrossRefGoogle ScholarPubMed
Banaszek, A., Smakulska, J., Fedyk, S., Jadwiszczak, K. A., and Chętnicki, W. (2003). Morphometric differentiation of shrews (Sorex araneus L., 1758) from hybrid zone between the Guzowy Młyn and Łęgucki Młyn chromosome races in Poland. Mammalia, 68, 217–24.Google Scholar
Bookstein, F. L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge, UK: Cambridge University Press.Google Scholar
Brünner, H., Lugon-Moulin, N., Balloux, F., Fumagalli, L., and Hausser, J. (2002a). A taxonomical re-evaluation of the Valais chromosome race of the common shrew Sorex araneus (Insectivora: Soricidae). Acta Theriologica, 47, 245–75.Google Scholar
Brünner, H., Lugon-Moulin, N., and Hausser, J. (2002b). Alps, genes, and chromosomes: their role in the formation of species in the Sorex araneus group (Mammalia, Insectivora), as inferred from two hybrid zones. Cytogenetic and Genome Research, 96, 8596.Google Scholar
Bulatova, N. S., Jones, R. M., White, T. A., et al. (2011). Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in European Russia. Journal of Evolutionary Biology, 24, 573–86.Google Scholar
Caumul, R. and Polly, P. D. (2005). Comparative phylogenetic and environmental components of morphological variation: skull, mandible and molar shape in marmots (Marmota, Rodentia). Evolution, 59, 2460–72.Google Scholar
Chętnicki, W., Fedyk, S., Banaszek, A., Szałaj, K. A., and Ratkiewicz, M. (1996). Morphometrical characteristics of the common shrews (Sorex araneus L.) from interracial hybrid zones. Hereditas, 125, 201207.Google Scholar
Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., et al. (2004). Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology Part B–Molecular and Developmental Evolution, 302, 424–35.Google Scholar
Churchfield, S. (1990). The Natural History of Shrews. London: Christopher Helm.Google Scholar
Corbet, G. B. and Southern, H. N. (eds) (1977). The Handbook of British Mammals, 2nd edn. Oxford: Blackwell.Google Scholar
Dannelid, E. (1998). Dental adaptations in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 157–74.Google Scholar
Dryden, I. L. and Mardia, K. V. (1998). Statistical Analysis of Shape. Chichester: Wiley.Google Scholar
Ehrich, T. H., Vaughn, T. T., Koreishi, S., et al. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology Part B–Molecular and Developmental Evolution, 296, 5879.CrossRefGoogle ScholarPubMed
Evans, A. R. and Sanson, G. D. (2003). The tooth of perfection: functional and spatial constraints on mammalian tooth shape. Biological Journal of the Linnean Society, 78, 173–91.Google Scholar
Foote, M. (1993). Contributions of individual taxa to overall morphological disparity. Paleobiology, 19, 403–19.Google Scholar
Grigoryeva, O. O., Shestak, A. G., Sycheva, V. B., et al. (2011). Isolation effect in narrow hybrid zones of Sorex araneus chromosome races. Doklady Biochemistry and Biophysics, 436, 41–3.Google Scholar
Grüneberg, H. (1963). The Pathology of Development. Oxford: Blackwell.Google Scholar
Hanken, J. and Hall, B. K. (1993). The Skull. Chicago: University of Chicago Press.Google Scholar
Hanski, I. (1994). Population biological consequences of body size in Sorex. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 1526.Google Scholar
Hanski, I. (1999). Metapopulation Ecology. Oxford: Oxford University Press.Google Scholar
Hanski, I. and Kaikusalo, A. (1989). Distribution and habitat selection of shrews in Finland. Annales Zoologici Fennici, 26, 339–48.Google Scholar
Hausser, J. (1984). Genetic drift and selection: their respective weights in the morphological and genetic differentiation of four species of shrews in Southern Europe (Insectivora, Soricidae). Zeitschrift für zoologische Systematik und Evolutions-forschung, 22, 302–20.Google Scholar
Hausser, J. (1994). The Sorex of the araneus-arcticus group (Mammalia: Soricidae): do they actually speciate? In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 295306.Google Scholar
Hausser, J., Bosshard, F., Taberlet, P., and Wójcik, J. (1991). Relationships between chromosome races and species of Sorex of the araneus group in the western Alps. Mémoire de la Société Vaudoise des Sciences Naturelles, 19, 7995.Google Scholar
Hausser, J., Hutterer, R., and Vogel, P. (1990). Sorex araneus Linnaeus, 1758 – Waldspitzmaus. In Handbuch der Säugetiere Europas, Band 3/1, ed. Niethammer, J. and Krapp, F.. Wiesbaden: Aula-Verlag, pp. 237–78.Google Scholar
Hausser, J. and Jammot, D. (1974). Étude biométrique des mâchoires chez les Sorex du groupe araneus en Europe continentale (Mammalia, Insectivora). Mammalia, 38, 324–43.Google Scholar
Hillson, S. (1986). Teeth. Cambridge, UK: Cambridge University Press.Google Scholar
Homolka, M. (1980). Biometrischer Vergleich zweier Populationen Sorex araneus. Acta Scientiarum Naturalium Academiae Scientiarum Bohemicae Brno, 14 (10), 134.Google Scholar
Hutterer, R. (2005). Homology of unicuspids and tooth nomenclature in shrews. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 397404.Google Scholar
Klingenberg, C. P. and Leamy, L. J. (2001). Quantitative genetics of geometric shape in the mouse mandible. Evolution, 55, 2342–52.Google ScholarPubMed
Klingenberg, C. P., Leamy, L. J., and Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 1909–21.Google Scholar
Klingenberg, C. P., Leamy, L. J., Routman, E. J., and Cheverud, J. M. (2001). Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785802.Google Scholar
Lande, R. (1992). Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution, 46, 381–9.Google Scholar
Leamy, L. J., Klingenberg, C. P., Sherratt, E., Wolf, J. B., and Cheverud, J. M. (2008). A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity, 101, 518–26.Google Scholar
McNab, B. K. (1980). Food habits, energetics, and the population biology of mammals. American Naturalist, 116, 106–24.Google Scholar
Mezhzherin, V. A. (1964). Dehnel’s phenomenon and its possible explanation. Acta Theriologica, 8, 95114. (In Russian, with English summary).Google Scholar
Mishta, A. V. (2007). Morphometric variation of the common shrew Sorex araneus in Ukraine in relation to geoclimatic factors and karyotype. Russian Journal of Theriology, 6, 5162.Google Scholar
Monteiro, L. R., Duarte, L. C., and dos Reis, S. F. (2003). Environmental correlates of geographical variation in the skull and mandible shape of the punaré rat, Thricomys apereoides (Rodentia: Echimyidae). Journal of Zoology, 261, 4757.Google Scholar
Noor, M. A. F., Grams, K. L., Bertucci, L. A., and Reiland, J. (2001). Chromosomal inversions and the reproductive isolation of species. Proceedings of the National Academy of Sciences USA, 98, 12084–8.CrossRefGoogle ScholarPubMed
Ochocińska, D. and Taylor, J. R. E. (2003). Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species. Biological Journal of the Linnean Society, 78, 365–81.Google Scholar
Onishchenko, S. S. and Kostin, D. S. (2017). Patterns of variation in the shape of the mandible in Palaearctic species of Sorex, Neomys and Crocidura. Bulletin of Kemerovo State University. Series: Biological, Engineering and Earth Sciences, 1, 1622. (In Russian with English summary).Google Scholar
Peltonen, A. and Hanski, I. (1991). Patterns of island occupancy explained by colonization and extinction rates in shrews. Ecology, 72, 1698–708.Google Scholar
Polly, P. D. (2001). On morphological clocks and paleophylogeography: towards a timescale for Sorex hybrid zones. Genetica, 112/113, 339–57.Google Scholar
Polly, P. D. (2003). Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). Journal of Mammalogy, 84, 369–84.Google Scholar
Polly, P.D. (2005). Development, geography, and sample size in P matrix evolution: molar-shape change in island populations of Sorex araneus. Evolution and Development, 7, 2941.Google Scholar
Polly, P. D. (2007). Phylogeographic differentiation in Sorex araneus: morphology in relation to geography and karyotype. Russian Journal of Theriology, 6, 7384.Google Scholar
Polly, P. D., Eronen, J. T., Fred, M., et al. (2011). History matters: ecometrics and integrative climate change biology. Proceedings of the Royal Society B, 278, 1121–30.Google Scholar
Polly, P. D., Le Comber, S. C., and Burland, T. M. (2005). On the occlusal fit of tribosphenic molars: are we underestimating species diversity in the Mesozoic? Journal of Mammalian Evolution, 12, 285301.Google Scholar
Polly, P. D. and Mock, O. B. (2017). Heritability: the link between development and the microevolution of molar tooth form. Historical Biology, 30, 5363.Google Scholar
Polly, P. D., Polyakov, A. V., Ilyashenko, V. B., et al. (2013). Phenotypic variation across chromosomal hybrid zones of the common shrew (Sorex araneus) indicates reduced gene flow. PLoS ONE, 8, e67455.Google Scholar
Polyakov, A. V., Onischenko, S. S., Ilyashenko, V. B., Searle, J. B., and Borodin, P. M. (2002). Morphometric difference between the Novosibirsk and Tomsk chromosome races of Sorex araneus in a zone of parapatry. Acta Theriologica, 47, 381–7.Google Scholar
Polyakov, A. V., Volobouev, V. T., Aniskin, V. M., et al. (2003). Altitudinal partitioning of two chromosome races of the common shrew (Sorex araneus) in West Siberia. Mammalia 67: 201–7.Google Scholar
Polyakov, A. V., White, T. A., Jones, R. M., Borodin, P. M., and Searle, J. B. (2011). Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Eulipotyphla): hybrid zone in Siberia. Journal of Evolutionary Biology, 24, 1393–402.Google Scholar
Poroshin, E. A., Wójcik, J. M., Bobretsov, A. V., and Kupriyanova, I. F. (2006). Morphometric differentiation between the Manturovo and Serov chromosome races of the common shrew Sorex araneus. Acta Theriologica, 51, 255264.Google Scholar
Poroshin, E. A., Polly, P. D., and Wójcik, J. M. (2010). Climate and morphological change on decadal scales: multiannual variation in the common shrew (Sorex araneus L.) in northeast Russia. Acta Theriologica, 55, 193202.Google Scholar
Pucek, Z. (1970). Seasonal and age changes in shrews as an adaptive process. Symposia of the Zoological Society of London, 26, 189207.Google Scholar
Reinwaldt, E. (1961). Über Zahnanomalien und die Zahnformel der Gattung Sorex Linné. Arkiv för Zoologi, 13, 533–9.Google Scholar
Rieseberg, L. H. (2001). Chromosomal rearrangements and speciation. Trends in Ecology and Evolution, 16, 351–8.Google Scholar
Rohlf, F. J. and Slice, D. (1990). Extentions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 4059.Google Scholar
Rowe, L. W. and Hastings, D. A. (1994). TerrainBase Worldwide Digital Terrain Data (release 1.0). Boulder, CO: National Oceanic and Atmospheric Administration, National Geophysical Data Center.Google Scholar
Salazar-Ciudad, I. and Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proceedings of the National Academy of Sciences USA, 99, 8116–20.Google Scholar
Salazar-Ciudad, I. and Jernvall, J. (2004). How different types of pattern formation mechanisms affect the evolution of form and development. Evolution and Development, 6, 616.CrossRefGoogle ScholarPubMed
Salazar-Ciudad, I. and Jernvall, J. (2010). A computational model of teeth and the developmental origins of morphological variation. Nature, 464, 583–6.Google Scholar
Schmidt, E. (1967). Unregelmässigkeiten der Zahl der Alveolen and den oberen einspitzigen Zähnen bei der Waldspitzmaus. Acta Theriologica, 12, 665–89.Google Scholar
Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size so Important? Cambridge, UK: Cambridge University Press.Google Scholar
Schroeder, H. E. (1987). Oral Structural Biology. Stuttgart: Thieme Verlag.Google Scholar
Schubarth, H. (1958). Zur Variabilität von Sorex araneus araneus L. Acta Theriologica, 2 , 175202.Google Scholar
Searle, J. B., Fedyk, S., Fredga, K., Hausser, J., and Volobouev, V. T. (1991). Nomenclature for the chromosomes of the common shrew (Sorex araneus). Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 1322.Google Scholar
Searle, J. B. and Thorpe, R. S. (1987). Morphometric variation of the common shrew (Sorex araneus) in Britain, in relation to karyotype and geography. Journal of Zoology, 212, 373–7.Google Scholar
Serafiński, W. (1955). Morphological and ecological investigations on Polish species of the genus Sorex L. Insectivora, Soricidae. Acta Theriologica, 1, 2786.Google Scholar
Shchipanov, N. A., Bobretsov, A. V., Kuprianova, I. F., and Pavlova, S. V. (2011). Interracial and population variability of phenotypic (cranial) characters in the common shrew Sorex araneus L., 1758. Russian Journal of Genetics, 47, 6675.Google Scholar
Shchipanov, N. A., Voyta, L. L., Bobretsov, A. V., and Kuprianova, I. F. (2014). Intra-species structuring in the common shrew Sorex araneus (Lipotyphla: Soricidae) in European Russia: morphometric variability could give evidence of limitation of interpopulation migration. Russian Journal of Theriology, 13, 119140.Google Scholar
Shchipanov, N. A., Sycheva, V. B., and Tumasyan, F. A. (2016). Morphometric distances and population structuring in the common shrew Sorex araneus L. (Lipotyphla: Soricidae). Biology Bulletin, 43, 437–49.CrossRefGoogle Scholar
Skarén, U. (1964). Variation in two shrews, Sorex unguiculatus Dobson and S. araneus L. Annales Zoologici Fennici, 1, 94124.Google Scholar
Spitze, K. (1993). Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics, 135, 367–74.CrossRefGoogle ScholarPubMed
Stefen, C. (2013). Craniometric study of the common shrew (Sorex araneus L. 1758) from different localities and chromosomal races across Germany and Europe. Acta Theriologica, 58, 245–54.Google Scholar
Vasil’ev, A. G., Vasil’eva, I. A., and Kourova, T. P. (2015). Analysis of coupled geographic variation of three shrew species from southern and northern Ural taxocenes. Russian Journal of Ecology, 46, 552–8.CrossRefGoogle Scholar
White, T. A., Bordewich, M., and Searle, J. B. (2010). A network approach to study karyotype evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Systematic Biology, 59, 262–76.Google Scholar
White, T. A. and Searle, J. B. (2006). Factors explaining increased body size in common shrews (Sorex araneus) on Scottish islands. Journal of Biogeography, 34, 356–63.Google Scholar
White, T. A. and Searle, J. B. (2007). Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Molecular Ecology, 16, 2005–16.Google Scholar
Willmott, K. M. and Legates, D. R. (1998). Global Air Temperature and Precipitation: Regridded Monthly and Annual Climatologies (version 2.01). Newark, DE: Center for Climatic Research, University of Delaware.Google Scholar
Wójcik, A. M., Polly, P. D., Sikorski, M. D., and Wójcik, J. M. (2006). Population cycling and size, shape, epigenetic variation, and protein polymorphism in the yellow-necked mouse, Apodemus flavicollis. Evolution, 60, 1925–35.Google Scholar
Wójcik, J. M., Bogdanowicz, W., Pucek, Z., Wójcik, A. M., and Zalewska, H. (2000). Morphometric variation of the common shrew Sorex araneus in Poland, in relation to karyotype. Acta Theriologica, 45 (Suppl. 1), 161–72.Google Scholar
Wójcik, J. M., Polly, P. D., Wójcik, A. M., and Sikorski, M. D. (2007). Epigenetic variation of the common shrew, Sorex araneus, in different habitats. Russian Journal of Theriology, 6, 43–9.Google Scholar
Wójcik, J. M., Wójcik, A. M., and Sikorski, M. D. (2003). Morphometric variation in the common shrew, Sorex araneus, in different habitats. Mammalia, 68, 225–31.Google Scholar
Wójcik, J. M., Wójcik, A. M., and Zalewska, H. (1996). Chromosome and allozyme variation in the common shrew, Sorex araneus, in different habitats. Hereditas, 125, 183–9.Google Scholar
Wright, S. (1951). The genetic structure of populations. Annals of Eugenics, 15, 323–54.Google Scholar
Zima, J., Slivková, L., and Tomáškova, L. (2003). New data on karyotypic variation in the common shrew, Sorex araneus, from the Czech Republic: an extension of the range of the Laska race. Mammalia, 68, 209–15.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×