Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:42:22.207Z Has data issue: false hasContentIssue false

3 - Morphology and Genetics of the Common Shrew: General Features

Published online by Cambridge University Press:  01 March 2019

Jeremy B. Searle
Affiliation:
Cornell University, New York
P. David Polly
Affiliation:
Indiana University
Jan Zima
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelentsev, V. I., Pidoplichko, I. G., and Popov, B. M. (1956). Order Insectivora. In Mammals. Fauna of Ukraine, ed. Pidoplichko, I. G.. Kiev: Vydavnytstvo Akademii Nauk URSR, pp. 79256. (In Ukrainian).Google Scholar
Adamczewska-Andrzejewska, K. A. (1966). Variations of the hardness of the teeth of Sorex araneus Linnaeus, 1758. Acta Theriologica, 11, 5569.Google Scholar
Andersson, A.-C., Alstrom-Rapaport, C., and Fredga, K. (2005). Lack of mitochondrial DNA divergence between chromosome races of the common shrew, Sorex araneus, in Sweden. Implications for interpreting chromosomal evolution and colonization history. Molecular Ecology, 14, 2703–16.Google Scholar
Andersson, A.-C., Narain, Y., Tegelström, H., and Fredga, K. (2004). No apparent reduction of gene flow in a hybrid zone between the West and North European karyotypic groups of the common shrew, Sorex araneus. Molecular Ecology, 13 , 1205–15.Google Scholar
Ayala, F. J. and Powell, J. R. (1972). Allozymes as diagnostic characters of sibling species of Drosophila. Proceedings of the National Academy of Sciences USA, 69, 1094–6.Google Scholar
Badyaev, A. V. and Foresman, K. R. (2000). Extreme environmental change and evolution: stress-induced morphological variation is strongly concordant with patterns of evolutionary divergence in shrew mandibles. Proceedings of the Royal Society of London B, 267, 371–9.Google Scholar
Badyaev, A. V. and Foresman, K. R. (2004). Evolution of morphological integration. I. Functional units channel stress-induced variation. American Naturalist, 163, 868–79.Google Scholar
Badyaev, A. V., Foresman, K. R., and Fernandes, M. V. (2000). Stress and developmental stability: vegetation removal causes increased fluctuating asymmetry in shrews. Ecology, 81, 336–45.Google Scholar
Badyaev, A. V., Foresman, K. R., and Young, R. L. (2005). Evolution of morphological integration: developmental accommodation of stress-induced variation. American Naturalist, 166, 382–95.Google Scholar
Baláž, I. and Ambros, M. (2006). Shrews (Sorex spp.) somatometry and reproduction in Slovakia. Biologia, 61, 611–20.CrossRefGoogle Scholar
Balčiauskas, L. (2004). Sex- and age-related differences in tooth row length of small mammals: shrews. Acta Zoologica Lituanica, 14, 41–7.Google Scholar
Balčiauskas, L., Balčiauskienė, L., and Timm, U. (2014). Bergmann’s rule for Neomys fodiens in the middle of the distribution range. Central European Journal of Biology, 9, 1147–54.Google Scholar
Banaszek, A. (2006). A mosaic XY1Y2/XY1Y2Y2 common shrew Sorex araneus. Acta Theriologica, 51, 3942.Google Scholar
Banaszek, A., Ratkiewicz, M., Fedyk, S., Szałaj, K. A., and Chętnicki, W. (1996). The chromosomes and isoenzymes in marginal populations of the common shrew (Sorex araneus) in the Vistula delta. Zeitschrift für Säugetierkunde, 61, 6572.Google Scholar
Banaszek, A., Smakulska, J., Fedyk, S., Jadwiszczak-Szałaj, K. A., and Chętnicki, W. (2002). Morphometric differentiation of shrews (Sorex araneus L, 1758) from the hybrid zone between the Guzowy Młyn and Łęgucki Młyn chromosome races in Poland. Mammalia, 67, 217–24.Google Scholar
Bannikova, A. A., Bulatova, N. S., and Kramerov, D. A. (2006). Molecular variability in the common shrew Sorex araneus L. from European Russia and Siberia inferred from the length polymorphism of DNA regions flanked by short interspersed elements (Inter-SINE PCR) and the relationships between the Moscow and Seliger chromosome races. Russian Journal of Genetics, 42, 595604.Google Scholar
Bannikova, A. A., Chernetskaya, D., Raspopova, A., et al. (2018). Evolutionary history of the genus Sorex (Soricidae, Eulipotyphla) as inferred from multigene data. Zoologica Scripta, 47, 518–38.Google Scholar
Barton, N. H. and Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113–48.Google Scholar
Basset, P., Yannic, G., Yang, F. T., et al. (2006). Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group. Chromosome Research, 14, 253–62.CrossRefGoogle ScholarPubMed
Bergmans, W. (2011). An annotated list of mammal specimens in the collections of the former Zoological Museum of the University of Amsterdam (1890–2010). Zoölogische Mededelingen, 85, 863–76.Google Scholar
Bickford, D., Lohman, D. J., Sodhi, N. S., et al. (2006) Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22, 148–55.Google Scholar
Biltueva, L., Vorobieva, N., Perelman, P., et al. (2011). Karyotype evolution of Eulipotyphla (Insectivora): the genome homology of seven Sorex species revealed by comparative chromosome painting and banding data. Cytogenetic and Genome Research, 135, 5164.CrossRefGoogle ScholarPubMed
Bobretsov, A. V., Kupriyanova, I. F., Kalinin, A. A., et al. (2012). Morphological differentiation of the common shrew (Sorex araneus) in the northeastern European Russia. Zoologicheskii Zhurnal, 91, 605–18. (In Russian, with English summary).Google Scholar
Bogdanowicz, W. and Pucek, Z. (1995). Trends in skull morphology of Sorex araneus in Poland. In Proceedings of the 2nd European Congress of Mammalogy (abstracts of meeting), 27 March–1 April 1995, Southampton.Google Scholar
Bolshakov, V. N., Vasiljev, A. G., and Sharova, L. P. (1996). Fauna and Population Ecology of Shrews of Ural (Mammalia, Soricidae). Yekaterinburg: Yekaterinburg Publishing House. (In Russian).Google Scholar
Borodin, P. M., Karamysheva, T. V., Belonogova, N. M., et al. (2008). Recombination map of the common shrew, Sorex araneus (Eulipotyphla, Mammalia). Genetics, 178, 621–32.Google Scholar
Brünner, H., Lugon-Moulin, N., Balloux, F., Fumagalli, L., and Hausser, J. (2002a). A taxonomical re-evaluation of the Valais chromosome race of the common shrew Sorex araneus (Insectivora: Soricidae). Acta Theriologica, 47, 245–75.Google Scholar
Brünner, H., Turni, H., Kapischke, H.-J., Stubbe, M., and Vogel, P. (2002b). New Sorex araneus karyotypes from Germany and the postglacial recolonization of central Europe. Acta Theriologica, 47 , 277–93.Google Scholar
Bulatova, N., Jones, R. M., White, T. A., et al. (2011). Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in European Russia. Journal of Evolutionary Biology, 24, 573–86.Google Scholar
Carraway, L. N. (2009). Determining sex of Sorex shrews (Soricomorpha: Soricidae). American Midland Naturalist, 162, 8797.Google Scholar
Catzeflis, F. (1984). Systématique Biochimique, Taxonomie et Phylogenie des Musaraignes d’Europe (Soricidae, Mammalia). PhD dissertation, University of Lausanne.Google Scholar
Catzeflis, F. (2007). DNA studies on shrews. Russian Journal of Theriology, 6, 130–1.Google Scholar
Chętnicki, W., Fedyk, S., Banaszek, A., Szałaj, K. A., and Ratkiewicz, M. (1996). Morphometrical characteristics of the common shrew (Sorex araneus L.) from interracial hybrid zones. Hereditas, 125, 201–7.Google Scholar
Chmátal, L., Gabriel, S. I., Mitsainas, G. P., et al. (2014). Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Current Biology, 24 , 22953000.Google Scholar
Christian, J. (1963). Endocrine adaptive mechanisms and the physiologic regulation of population growth. In Physiological Mammalogy, vol. 1, ed. Mayer, W. and Gelder, R.. New York: Academic Press, pp. 189353.Google Scholar
Churchfield, S. (2002). Why are shrews so small? The costs and benefits of small size in northern temperate Sorex species in the context of foraging habits and prey supply. Acta Theriologica, 47, 169–84.Google Scholar
Churchfield, S. and Searle, J. B. (2008). Common shrew. In Mammals of the British Isles: Handbook, 4th edn, ed. Harris, S. and Yalden, D. W.. London: The Mammal Society, pp. 257–65.Google Scholar
Clevedon-Brown, J. and Twigg, G. I. (1970). Sexual dimorphism in the pelvis of the common shrew. Mammal Review, 1, 78–9.Google Scholar
Clover, R. C. (1979). Phenetic relationships among populations of Podarcis sicula and P. melisellensis (Sauria: Lacertidae) from islands in the Adriatic Sea. Systematic Zoology, 28, 284–98.Google Scholar
Corbet, G. B. (1977). Common shrew Sorex araneus. In The Handbook of British Mammals, 2nd edn, ed. Corbet, G. B. and Southern, H. N.. Oxford: Blackwell Scientific Publications, pp. 4654.Google Scholar
Crowcroft, P. (1957). The Life of the Shrew. London: Max Reinhardt.Google Scholar
Dannelid, E. (1989). Medial tines on the upper incisors and other dental features used as identification characters in European shrews of the genus Sorex (Mammalia, Soricidae). Zeitschrift für Säugetierkunde, 54 , 205–14.Google Scholar
de Villena, F. P. M. and Sapienza, C. (2001). Female meiosis drives karyotypic evolution in mammals. Genetics, 159, 1179–89.Google Scholar
Dechmann, D. K. N., LaPoint, S., Dullin, C., et al. (2017). Profound seasonal shrinking and regrowth of the ossified braincase in phylogenetically distant mammals with similar life histories. Scientific Reports, 7, 42443.Google Scholar
Dehnel, A. (1949). Studies on the genus Sorex L. Annales Universitatis Mariae Curie-Skłodowska C, 4, 17102. (In Polish, with English summary).Google Scholar
Dixkens, C., Klett, C., Bruch, J., et al. (1998). Zoo-FISH analysis in insectivores: ‘Evolution extols the virtue of the status quo’. Cytogenetics and Cell Genetics, 80, 61–7.Google Scholar
Dolgov, V. A. (1961). Variation in some bones of postcranial skeleton of the shrews (Mammalia, Soricidae). Acta Theriologica, 5, 203–27.Google Scholar
Dolgov, V. A. (1968). Structure and variability over time of ossification of the postcranial skeleton of Palearctic red-toothed shrews (Mammalia, Sorex). Archives of the Zoological Museum of Moscow University, 10, 200–21. (In Russian).Google Scholar
Dolgov, V. A. (1985). Red-toothed Shrews of the Old World. Moscow: Moscow State University Press. (In Russian).Google Scholar
Dumas, D. and Britton-Davidian, J. (2002). Chromosomal rearrangements and evolution of recombination: comparison of chiasma distribution patterns in standard and Robertsonian populations of the house mouse. Genetics, 16, 1355–66.Google Scholar
Dussex, N., Sainsbury, J., Moorhouse, R., Jamieson, I. G., and Robertson, B. C. (2015). Evidence for Bergmann’s Rule and not allopatric subspeciation in the threatened kaka (Nestor meridionalis). Journal of Heredity, 106, 679–91.Google Scholar
Ellenbroek, F. J. M. (1980). Interspecific competition in the shrews Sorex araneus and Sorex minutus (Soricidae, Insectivora): a population study of the Irish pygmy shrew. Journal of Zoology, 192, 119–36.Google Scholar
Ellerman, J. R. and Morrison-Scott, T. C. S. (1966). Checklist of Palaearctic and Indian Mammals, 1978 to 1946. London: British Museum (Natural History).Google Scholar
Fedyk, S. and Chętnicki, W. (2009). Whole-arm reciprocal translocation in a hybrid population of Sorex araneus. Chromosome Research, 17, 451–54.Google Scholar
Frafjord, K. (2008). Can environmental factors explain size variation in the common shrew (Sorex araneus)? Zeitschrift für Säugetierkunde, 73, 415–22.Google Scholar
Frafjord, K., Fredriksen, T., and Landghelle, G. (1994). Regional variation in the size of the common shrew Sorex araneus in Norway. Fauna Norvegica A, 15, 18.Google Scholar
Fredga, K. (1970). Unusual sex chromosome inheritance in mammals. Philosophical Transactions of the Royal Society of London B, 259, 1536.Google Scholar
Frykman, I. and Bengtsson, B. O. (1984). Genetic differentiation in Sorex. III. Electrophoretic analysis of the hybrid zone between two karyotypic races in Sorex araneus. Hereditas, 100, 259–70.Google Scholar
Frykman, I., Simonsen, V., and Bengtsson, B. O. (1983). Genetic differentiation in Sorex. I. Electrophoretic analysis of the karyotypic races of Sorex araneus in Sweden. Hereditas, 99, 279–92.Google Scholar
Fumagalli, L., Taberlet, P., Stewart, D. T., et al. (1999). Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 11, 222–35.Google Scholar
Fünfstück, T., Arandjelovic, M., Morgan, D. B., et al. (2015). The sampling scheme matters: Pan troglodytes troglodytes and P. t. schweinfurthii are characterized by clinal genetic variation rather than a strong subspecies break. American Journal of Physical Anthropology, 156, 181–91.CrossRefGoogle Scholar
Gabitova, A. T. and Moskvitina, N. S. (1992). Intra- and interpopulation variability of craniometrical features of common shrew (Sorex araneus L. 1758) in chromosomal mono- and polymorphic populations. In Morphological and Chromosomal Variability of Micromammals, ed. Lukyanov, O. A.. Yekaterinburg: Nauka, pp. 1136. (In Russian).Google Scholar
Gavin, T. A., Sherman, P. W., Yensen, E., and May, B. (1999). Population genetic structure of the Northern Idaho ground squirrel (Spermophilus brunneus brunneus). Journal of Mammalogy, 80, 156–68.Google Scholar
Graf, J.-D., Hausser, J., Farina, A., and Vogel, P. (1979). Confirmation du statut spécifique de Sorex samniticus Altobello, 1926 (Mammalia, Insectivora). Bonner zoologische Beiträge, 30, 1421.Google Scholar
Graphodatsky, A. S. and Radjabli, S. I. (1988). An Atlas of Chromosomes of Domestic and Laboratory Mammals. Novosibirsk: Nauka. (In Russian).Google Scholar
Graphodatsky, A. S., Radjabli, S. I., Zaitsev, M. V., and Sharshov, A. A. (1991). The levels of chromosome conservatism in the different groups of insectivores (Mammalia, Insectivora). Proceedings of the Zoological Institute, Academy of Sciences of the USSR, 243, 4757. (In Russian, with English summary).Google Scholar
Graphodatsky, A. S., Trifonov, V. A., and Stanyon, R. (2011). The genome diversity and karyotype evolution of mammals. Molecular Cytogenetics, 4, 22.Google Scholar
Grigoryeva, O. O., Borisov, Y. M., Stakheev, V. V., et al. (2015). Genetic structure of the common shrew Sorex araneus L. 1758 (Mammalia, Lipotyphla) in continuous and fragmented areas. Russian Journal of Genetics, 51, 607–18.Google Scholar
Halkka, L., Halkka, O., Skarén, U., and Söderlund, V. (1974). Chromosome banding pattern in a polymorphic population of Sorex araneus from northeastern Finland. Hereditas, 76, 305–14.Google Scholar
Halkka, L., Vakula, N., and Kaikusalo, A. (1994). Polymorphic and stable chromosomes of Sorex araneus L. differ in centromere constitution (R-banding): evolutionary aspects. Annales Zoologici Fennici, 31, 289–96.Google Scholar
Hanski, I. (1989). Population biology of Eurasian shrews: towards a synthesis. Annales Zoologici Fennici, 26, 469–79.Google Scholar
Hanski, I. and Kuitunen, J. (1986). Shrews on small islands: epigenetic variation elucidates population stability. Holarctic Ecology, 9, 193204.Google Scholar
Hanski, I., Peltonen, A., and Kaski, L. (1991). Natal dispersal and social dominance in the common shrew Sorex araneus. Oikos, 62, 4858.Google Scholar
Hausser, J. (1984). Genetic drift and selection: their respective weights in the morphological and genetic differentiation of four species of shrews in southern Europe (Insectivora, Soricidae). Zeitschrift für zoologische Systematik und Evolutions-forschung, 22, 302–20.Google Scholar
Hausser, J., Bosshard, F., Taberlet, P., and Wójcik, J. (1991). Relationships between chromosome races and species of Sorex of the araneus group in the western Alps. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 7995.Google Scholar
Hausser, J., Fumagalli, L., and Taberlet, P. (1998). Mitochondrial DNA evolution in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 295308.Google Scholar
Hausser, J., Graf, J.-D., and Meylan, A. (1975). Données nouvelles sur les Sorex d’Espagne et des Pyrénées. Bulletin de la Société Vaudoise des Sciences Naturelles, 348, 241–52.Google Scholar
Hausser, J., Hutterer, R., and Vogel, P. (1990). Sorex araneus Linnaeus, 1758 – Waldspitzmaus. In Handbuch der Säugetiere Europas, ed. Niethammer, J. and Krapp, F.. Wiesbaden: Aula-Verlag, pp. 237–78.Google Scholar
Heikkilä, J. (1989). Population genetics of north temperate shrews (Soricidae). A review. Annales Zoologici Fennici, 26, 459–67.Google Scholar
Hoffmann, R. S. (1985). The correct name for the Palaearctic brown, or flat-skulled, shrew is Sorex roboratus. Proceedings of the Biological Society of Washington, 98, 1728.Google Scholar
Hoffmann, R. S. (1987). A review of the systematics and distribution of Chinese red-toothed shrews (Mammalia: Soricidae). Acta Theriologica Sinica, 7, 100–39.Google Scholar
Homolka, M. (1980). Biometrischer Vergleich zweier Populationen Sorex araneus. Acta Scientarum Naturalium Brno, 14 (10), 134.Google Scholar
Huang, T., Dang, X., An, M., Chen, L., and Zhang, J. (2016). The complete mitochondrial genome of the Sorex araneus. Mitochondrial DNA A, 27, 3655–6.Google Scholar
Hutterer, R. (2005). Order Soricomorpha. In Mammal Species of the World: a Taxonomical Reference, 3rd edn, ed. Wilson, D. E. and Reeder, D. A.. Baltimore: Johns Hopkins University Press, pp. 220311.Google Scholar
Illarionova, N. A., Potapov, S. G., and Orlov, V. N. (2007). RAPDs in representatives of the genus Sorex, including chromosome races of Sorex araneus. Russian Journal of Theriology, 6, 2733.Google Scholar
Ivanitskaya, E. Y. (1989). Constitutive heterochromatin and nucleolar organizer regions in karyotypes of some shrews (Soricidae, Insectivora). Genetika (Moscow), 25, 1188–98. (In Russian, with English summary).Google Scholar
Junge, J. A., Hoffmann, R. S., and Debry, R. W. (1983). Relationships within the Holarctic Sorex arcticusSorex tundrensis species complex. Acta Theriologica, 28, 339–50.Google Scholar
Kozlovsky, A. I. and Orlov, V. N. (1971). Karyological evidence of species independence of Sorex isodon Turov (Soricidae, Insectivora). Zoologicheskii Zhurnal, 50, 1056–62. (In Russian, with English summary).Google Scholar
Kryštufek, B. and Quadracci, A. (2008). Effects of latitude and allopatry on body size variation in European water shrews. Acta Theriologica, 53, 3946.Google Scholar
Kryštufek, B. and Vohralík, V. (2001). Mammals of Turkey and Cyprus: Introduction, Checklist, Insectivora. Koper: Znanstveno-raziskovalno središče Republike Slovenije.Google Scholar
Kubik, J. (1951). Analysis of the Puławy population of Sorex araneus araneus L. and Sorex minutus minutus L. Annales Universitatis Mariae Curie-Skłodowska C, 5, 335–72. (In Polish).Google Scholar
Kupriyanova, I. F., Krasinskaya, M. I., and Agadzhanyan, A. K. (1992). Variability of craniometrical parameters in shrews of genus Sorex by materials from European north. In Proceedings of an All-Union Conference on Biology of Insectivoran Mammals (abstracts of meeting), 4–7 February 1992, Novosibirsk, pp. 92–3. (In Russian).Google Scholar
Kupriyanova, I. F., Puzachenko, A. Y., and Agadzhanyan, A. K. (2003). Spatial and temporal variation of cranial parameters in the common shrew, Sorex araneus (Insectivora). Zoologicheskii Zhurnal, 82, 839–51. (In Russian, with English summary).Google Scholar
Kuruts, N. V. (1983). The analysis of some age and geographical differences in shrews (Soricidae, Insectivora, Mammalia). In Problems of General and Molecular Biology, vol. 2. Kiev: Kiev State University Press, pp. 117–20. (In Russian, with English summary).Google Scholar
Lawing, A. M. and Polly, P. D. (2010). Geometric morphometrics: recent applications to the study of evolution and development. Journal of Zoology, 280, 17.Google Scholar
Lázaro, J., Dechmann, D. K. N., LaPoint, S., Wikelski, M., and Hertel, M. (2017). Profound reversible seasonal changes of individual skull size in a mammal. Current Biology, 27, R1106–7.Google Scholar
Lázaro, J., Hertel, M., LaPoint, S., et al., (2018a). Cognitive skills of common shrews (Sorex araneus) vary with seasonal changes in skull size and brain mass. Journal of Experimental Biology, 221, 166595.Google Scholar
Lázaro, J., Hertel, M., Sherwood, C.C., Muturi, M., and Dechmann, D. K. N. (2018b). Profound seasonal changes in brain size and architecture in the common shrew. Brain Structure and Function, 223, 2823–40.Google Scholar
Liao, J. C., Zhang, Z. B., and Liu, N. F. (2006). Altitudinal variation of skull size in Daurian pika (Ochotona daurica Pallas, 1868). Acta Zoologica Academiae Scientiarum Hungaricae, 52, 319–29.Google Scholar
Lindblad-Toh, K., Garber, M., Zuk, O., et al. (2011). A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478, 476–82.Google Scholar
Loch, R. (1977). A biometrical study of karyotypes A and B of Sorex araneus Linnaeus, 1758, in the Netherlands (Mammalia, Insectivora). Lutra, 19, 2136.Google Scholar
López-Fuster, M. J. and Ventura, J. (1987). Estudio morfometrico le Sorex coronatus Millet, 1828 (Mammalia, Insectivora) en el notre de la Peninsula Iberica y sur de Francia. In Mamiferos y Helmintos, Volumen homenaje al Prof. Dr. H. Kahmann en su 81 aniversario. Barcelona: Edit Ketres, pp. 5564.Google Scholar
Loxdale, H. D., Davis, B. J., and Davis, R. J. (2016). Known knowns and unknowns in biology. Biological Journal of the Linnean Society, 117, 386–98.Google Scholar
Lugon-Moulin, N., Balloux, F., and Hausser, J. (2000). Genetic differentiation of common shrew Sorex araneus populations among different alpine valleys revealed by microsatellites. Acta Theriologica, 45 (Suppl. 1), 103–17.Google Scholar
Lyon, M. F. (1961). Gene action in X-chromosome of mouse (Mus musculus L). Nature, 190, 372–3.Google Scholar
Macholán, M., Filippucci, M. G., Zima, J., Kryštufek, B., and Simson, S. (1994). Karyological and allozyme survey of the common shrew, Sorex araneus, from Macedonia. Zeitschrift für zoologische Systematik und Evolutions-forschung, 32, 129–36.Google Scholar
Mackiewicz, P., Moska, M., Wierzbicki, H., Gagat, P., and Mackiewicz, D. (2017). Evolutionary history and phylogeographic relationships of shrews from Sorex araneus group. PLoS One, 12, e0179760.Google Scholar
McNab, B. K. (2010). Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia, 164, 1323.Google Scholar
Meiri, S., Yom-Tov, Y., and Geffen, E. (2007). What determines conformity to Bergmann’s rule? Global Ecology and Biogeography, 16, 788–94.Google Scholar
Meyer, A. and Searle, J. B. (1994). Morphological studies on British common shrews. Folia Zoologica, 43 (Suppl. l), 115.Google Scholar
Meylan, A. and Hausser, J. (1978). Le type chromosomique A des Sorex du group araneus: Sorex coronatus Millet, 1828 (Mammalia, Insectivora). Mammalia, 42, 115–22.Google Scholar
Mezhzherin, V. A. (1964). Dehnel’s phenomenon and its possible explanation. Acta Theriologica, 8, 95114. (In Russian, with English summary).Google Scholar
Mezhzherin, V. A., Kuruts, N. V. Mikhalevich, O. A., and Revenko, N. G. (1984). The population levels of morphological differences as steps of evolutionary transformation. Zhurnal Obshchei Biologii, 45, 306–17. (In Russian, with English summary).Google Scholar
Miller, G. S. (1912). Catalogue of the Mammals of Western Europe. London: British Museum (Natural History).Google Scholar
Mishta, A. (1993). Species composition and morphological differentiation of shrews from the family Soricidae from the Carpathian Mountains. In The East Carpathians Fauna: its Present State and Prospects of Preservation. Proceedings of the International Conference, ed. Melika, G.. Uzhgorod: Uzhgorod State University, pp. 85–8. (In Russian).Google Scholar
Mishta, A. V. (1997). Karyotypic and Morphological Differentiation of Shrews Genus Sorex L., 1758 (Insectivora, Soricidae) of Ukrainian Fauna. Candidate of Biological Sciences dissertation, Shmalhausen Institute of Zoology, National Academy of Sciences, Kiev. (In Ukrainian).Google Scholar
Mishta, A. V. (2007). Morphometric variation of the common shrew Sorex araneus in Ukraine, in relation to geoclimatic factors and karyotype. Russian Journal of Theriology, 6, 5162.Google Scholar
Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., et al. (1999). The Atlas of European Mammals. London: Poyser.Google Scholar
Mlíkovský, J., Benda, P., Moravec, J., and Šanda, R. (2011). Type specimens of recent vertebrates in the collections of the National Museum, Prague, Czech Republic. Journal of the National Museum (Prague), Natural History Series, 180, 133–64.Google Scholar
Moska, M., Laskowska, M., Kosowska, B., Strzała, T., and Marszałek-Kruk, B. (2008). Variation of the common shrew (Sorex araneus L.) dentition. Zoologica Poloniae, 53, 4956.Google Scholar
Mostert, K. (1992). Gewone bosspitsmuis Sorex araneus L., 1758. In Atlas Van de Nederlandse Zoogdieren, ed. Broekhuizen, S., Hoekstra, B., van Laar, V., Smeenk, C., and Thissen, J. B. M.. Utrecht: Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, pp. 26–8.Google Scholar
Ochocińska, D. and Taylor, J. R. E. (2003). Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species. Biological Journal of the Linnean Society, 78, 365–81.Google Scholar
Ognev, S. I. (1928). The Mammals of the Eastern Europe and the Northern Asia. vol. 1. Moscow-Leningrad: Glavnauka Publishing House. (In Russian).Google Scholar
Okulova, N. M., Balakirev, A. E., and Orlov, V. N. (2007). Craniometrical characteristics of some Sorex araneus (Insectivora) chromosomal races. Russian Journal of Theriology, 6, 6371.Google Scholar
Olert, J. and Schmid, M. (1978). Comparative analysis of karyotypes in European shrew species. I. The sibling species Sorex araneus and S. gemellus: Q-bands, G-bands, and position of NORs. Cytogenetics and Cell Genetics, 20, 308–22.Google Scholar
Orlov, V. N., Sycheva, V. B., Cherepanova, E. V., and Borisov, Y. M. (2013). Craniometric differences between karyotypic races of the common shrew Sorex araneus (Mammalia) as a result of limited hybridization. Russian Journal of Genetics, 49, 417–27.Google Scholar
Pack, S. D., Borodin, P. M., Serov, O. L., and Searle, J. B. (1993). The X-autosome translocation in the common shrew (Sorex araneus L.): late replication in female somatic cells and pairing in male meiosis. Chromosoma, 102, 355–60.Google Scholar
Pankakoski, E. (1989). Variation in the tooth wear of the shrews Sorex araneus and S. minutus. Annales Zoologici Fennici, 26, 445–57.Google Scholar
Pankakoski, E. and Hanski, I. (1989). Metrical and non-metrical skull traits of the common shrew Sorex araneus and their use in population studies. Annales Zoologici Fennici, 26, 433–44.Google Scholar
Panteleev, P. A. (1996). About intraspecific systematics and taxonomic value of exterior and craniometric characteristics in Arvicola terrestris. Vestnik Zoologii, 30, 21–5. (In Russian, with English summary).Google Scholar
Panteleev, P. A., Gerasimov, S., and Khristov, L. (1991). Influence of different approaches to variation investigation on its results. Ekologija, 5, 4655. (In Russian).Google Scholar
Passarge, H. (1984). Sorex isodon marchicus ssp. nova in Mitteleuropa. Zeitschrift für Säugetierkunde, 49, 278–84.Google Scholar
Pavlinov, I. Y. (2004). Analysis of variation of the upper antemolars in the brown-toothed shrews (Mammalia: Sorex) by means of geometric morphometrics. Zoologicheskii Zhurnal, 83, 869–75. (In Russian, with English summary).Google Scholar
Pavlova, S. V. (2010). A distinct chromosome race of the common shrew (Sorex araneus Linnaeus, 1758) within the Arctic Circle in European Russia. Comparative Cytogenetics, 4, 73–8.Google Scholar
Pavlova, S. V. (2013). Cytogenetic analysis of a hybrid zone between the Moscow and Neroosa chromosomal races of the common shrew (Sorex araneus) differing by a single WART-like chromosome rearrangement. Tsitologia, 55, 271–4.Google Scholar
Pavlova, S. V. and Bulatova, N. S. (2010). Identification of a novel WART-like rearrangement in complex heterozygotes in an interracial hybrid zone of the common shrew Sorex araneus L. Russian Journal of Genetics, 46, 1125–6.Google Scholar
Pavlova, S. V., Kolomiets, O. L., Bulatova, N., and Searle, J. B. (2008). Demonstration of a WART in a hybrid zone of the common shrew (Sorex araneus Linnaeus, 1758). Comparative Cytogenetics, 2, 115–20.Google Scholar
Polly, P. D. (2003). Paleophylogeography of Sorex araneus (Insectivora, Soricidae): molar shape as a morphological marker for fossil shrews. Mammalia, 67, 233–44.Google Scholar
Polly, P. D. (2005). Development and phenotypic correlations: the evolution of tooth shape in Sorex araneus. Evolution and Development, 7, 2941.Google Scholar
Polly, P. D. (2007). Phylogeographic differentiation in Sorex araneus: morphology in relation to geography and karyotype. Russian Journal of Theriology, 6, 7384.Google Scholar
Polly, P. D., Polyakov, A. V., Ilyashenko, V. B., et al. (2013). Phenotypic variation across chromosomal hybrid zones of the common shrew (Sorex araneus) indicates reduced gene flow. PLoS One, 8, e67455.Google Scholar
Polyakov, A. V., Ilyashenko, V. B., Onischenko, S. S., Panov, V. V., and Borodin, P. M. (2009). AFLP diversity between the Novosibirsk and Tomsk chromosome races of the common shrew (Sorex araneus). Comparative Cytogenetics, 3, 85–9.Google Scholar
Polyakov, A. V., Onischenko, S. S., Ilyashenko, V. B., Searle, J. B., and Borodin, P. M. (2002). Morphometric difference between the Novosibirsk and Tomsk chromosome races of Sorex araneus in a zone of parapatry. Acta Theriologica, 47, 381–7.Google Scholar
Polyakov, A. V. and Panov, V. V. (2017). Study of male-mediated gene flow across a hybrid zone in the common shrew (Sorex araneus) using Y chromosome. Comparative Cytogenetics, 11, 421–30.Google Scholar
Poroshin, E. A. (2006). Morphological Variability of Common Shrew (Sorex araneus L.) in European North-East of Russia. Candidate of Biological Sciences dissertation, Syktyvkar State University. (In Russian).Google Scholar
Poroshin, E. A. (2009). Intraracial variation in the common shrew and its dependence on climate. In Problems of Animal Investigations and Protection on the North (abstracts of meeting), 16–20 November 2009, Syktyvkar, pp. 135–7. (In Russian).Google Scholar
Poroshin, E. A., Polly, P. D., and Wójcik, J. M. (2010). Climate and morphological change on decadal scales: multiannual variation in the common shrew Sorex araneus in northeast Russia. Acta Theriologica, 55, 193202.Google Scholar
Poroshin, E. A., Wójcik, J. M., Bobretsov, A. V., and Kupriyanova, I. F. (2006). Morphometric differentiation between the Manturovo and Serov chromosome races of the common shrew Sorex araneus. Acta Theriologica, 51, 255–64.Google Scholar
Prost, S., Kleitmann, J., van Kolfschoten, T., et al. (2013). Effects of late quaternary climate change on Palearctic shrews. Global Change Biology, 19, 1865–74.Google Scholar
Pucek, Z. (1970). Seasonal and age change in shrews as an adaptive process. Symposia of the Zoological Society of London, 26, 186207.Google Scholar
Pucek, Z. and Markov, G. (1964). Seasonal changes in the skull of the common shrew from Bulgaria. Acta Theriologica, 9, 363–6.Google Scholar
Ratkiewicz, M., Fedyk, S., Banaszek, A., et al. (2002). The evolutionary history of the two karyotypic groups of the common shrew, Sorex araneus, in Poland. Heredity, 88, 235–42.Google Scholar
Ruedi, M. (1998). Protein evolution in shrews. In The Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 269–94.Google Scholar
Schaefer, H. (1975). Die Spitzmäuse der Hohen Tatra seit 30 000 Jahren (Mandibular-Studie). Zoologischer Anzeiger, 195, 89111.Google Scholar
Schaffner, S. F. (2004). The X chromosome in population genetics. Nature Reviews Genetics, 5, 4351.Google Scholar
Schmid, M., Schempp, W., and Olert, J. (1982). Comparative analysis of karyotypes in European shrew species. 2. Constitutive heterochromatin, replication patterns, and sister chromatid exchanges in Sorex araneus and Sorex gemellus. Cytogenetics and Cell Genetics, 34, 124–35.Google Scholar
Searle, J. B. (1983). Robertsonian Chromosomal Variation in the Common Shrew Sorex araneus L. PhD dissertation, University of Aberdeen.Google Scholar
Searle, J. B. (1984). A wild common shrew (Sorex araneus) with an XXY sex chromosome constitution. Journal of Reproduction and Fertility, 70, 353–6.Google Scholar
Searle, J. B. (1985a). Isoenzyme variation in the common shrew (Sorex araneus) in Britain, in relation to karyotype. Heredity, 55, 175–80.Google Scholar
Searle, J. B. (1985b). Methods for determining the sex of common shrews (Sorex araneus). Journal of Zoology, 206, 279–82.Google Scholar
Searle, J. B. (1986a). A trimeric esterase in the common shrew. Journal of Heredity, 77, 121–2.Google Scholar
Searle, J. B. (1986b). Meiotic studies of Robertsonian heterozygotes from natural populations of the common shrew, Sorex araneus L. Cytogenetics and Cell Genetics, 41, 154–62.Google Scholar
Searle, J. B. (1989). An autosomal trisomic cell line in a wild common shrew (Sorex araneus). Hereditas, 110, 183–4.Google Scholar
Searle, J. B. (1990). A cytogenetic analysis of reproduction in common shrews (Sorex araneus) from a karyotypic hybrid zone. Hereditas, 113, 121–32.Google Scholar
Searle, J.B., Fedyk, S., Fredga, K., Hausser, J., and Volobouev, V. (1991). Nomenclature for the chromosomes of the common shrew (Sorex araneus). Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 1322.Google Scholar
Searle, J. B. and Jones, R. M. (2002). Sex chromosome aneuploidy in wild small mammals. Cytogenetic and Genome Research, 96, 239–43.Google Scholar
Searle, J. B. and Thorpe, R. S. (1987). Morphometric variation of the common shrew (Sorex araneus) in Britain, in relation to karyotype and geography. Journal of Zoology, 212, 373–7.Google Scholar
Searle, J. B. and Wilkinson, P. J. (1986). The XYY condition in a wild mammal: an XY/XYY mosaic common shrew (Sorex araneus). Cytogenetics and Cell Genetics, 41, 225–33.Google Scholar
Searle, J. B. and Wójcik, J. M. (1998). Chromosomal evolution: the case of Sorex araneus. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 219–68.Google Scholar
Senyk, A. F. (1972). The common shrew (Sorex araneus L.) of Ukrainian Carpathians. Vestnik Zoologii, 3, 6771. (In Russian, with English summary).Google Scholar
Serafiński, W. (1955). Morphological and ecological studies of Polish species of Sorex L. (Insectivora, Soricidae). Acta Theriologica, 1, 2781. (In Polish, with English summary).Google Scholar
Serov, O. L., Matyakhina, L. D., Borodin, P. M., and Searle, J. B. (1998). The common shrew gene map. Institute for Laboratory Animal Research (ILAR) Journal, 39, 195202.Google Scholar
Shadrina, E. G. and Sheftel, B. I. (2007). Common shrew (Sorex araneus) – a new species of the fauna of Yakutia. Vestnik Yakutskogo Gosudarstvennogo Universiteta, 4, 57. (In Russian, with English summary).Google Scholar
Sharman, G. B. (1991). History of discovery and recognition of XY1Y2 systems and chromosome polymorphism in mammals. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 712.Google Scholar
Shchipanov, N. A., Bobretsov, A. V., Kuprianova, I. F., and Pavlova, S. V. (2011). Interracial and population variability of phenotypic (cranial) characters in the common shrew Sorex araneus L., 1758). Russian Journal of Genetics, 47, 6675.Google Scholar
Shchipanov, N. A., Voyta, L. L., Bobretsov, A. V., and Kuprianova, I. F. (2014). Intra-species structuring in the common shrew Sorex araneus (Lipotyphla: Soricidae) in European Russia: morphometric variability could give evidence of limitation of interpopulation migration. Russian Journal of Theriology, 13, 119–40.Google Scholar
Siivonen, L. (1965). Sorex isodon Turov (1924) and S. unguiculatus Dobson (1890) as independent species. Aquilo, Series Zoologica, 4, 134.Google Scholar
Skarén, U. (1964). Variation in two shrews, Sorex unguiculatus Dobson and S. a. araneus L. Annales Zoologici Fennici, 1, 94124.Google Scholar
Smith, M. F. (1979). Geographic variation in genic and morphological characters in Peromyscus californicus. Journal of Mammalogy, 60, 705–22.Google Scholar
Stefen, C. (2013). Craniometric study of the common shrew (Sorex araneus L. 1758) from different localities and chromosomal races across Germany and Europe. Acta Theriologica, 58, 245–54.Google Scholar
Steven, D. M. (1952). Notes on a collection of small mammals from western Norway. Universitetet i Bergen Årbok, Naturvitenskapelig Rekke, 6, 113.Google Scholar
Stockley, P., Searle, J. B., Macdonald, D. W., and Jones, C. S. (1994). Alternative reproductive tactics in male common shrews: relationships between mate-searching behaviour, sperm production, and reproductive success as revealed by DNA fingerprinting. Behavioral Ecology and Sociobiology, 34, 71–8.Google Scholar
Stroganov, S. U. (1957). Mammals of Siberia. Insectivora. Мoscow: Publishing House of the USSR Academy of Sciences. (In Russian).Google Scholar
Sulkava, S., Vahtola, M., and Fredga, K. (1985). Structure of the upper tooth-row of Sorex araneus in Scandinavia. Acta Zoologica Fennica, 173, 237–9.Google Scholar
Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research, 75, 304–6.Google Scholar
Taberlet, P., Fumagalli, L., and Hausser, J. (1994). Chromosomal versus mitochondrial DNA evolution: tracking the evolutionary history of the southwestern European populations of the Sorex araneus group (Mammalia, Insectivora). Evolution, 48, 623–36.Google Scholar
Tegelström, H. and Hansson, L. (1987). Evidence of long distance dispersal in the common shrew (Sorex araneus). Zeitschrift für Säugetierkunde, 52, 5254.Google Scholar
Tegelström, H., Searle, J., Brookfield, J., and Mercer, S. (1991). Multiple paternity in the common shrew (Sorex araneus) is confirmed by DNA-fingerprinting. Heredity, 66, 373–9.Google Scholar
Thomas, O. (1913). Four new shrews. Annals and Magazine of Natural History, Series 8, 11, 214–18.Google Scholar
Thorpe, R. S. (1976). Biometric analysis of geographic variation and racial affinities. Biological Review, 51, 407–52.Google Scholar
Turni, H. (1999). Schlüssel für die Bestimmung von in Deutschland vorkommenden Säugetierschädeln aus Eulengewölllen (Mammalia). Zoologische Abhandlungen Staatliches Museum für Tierkunde Dresden, 50, 351–99.Google Scholar
Turni, H., Kapischke, H.-J., Brünner, H., and Feiler, A. (2001). Der Status von Sorex isodon marchicus Passarge, 1984 (Mammalia: Insectivora: Soricidae). Zoologische Abhandlungen Staatliches Museum für Tierkunde Dresden, 51, 205–19.Google Scholar
van Laar, V. (1964). Onderzoek Naar de Systematiek Van de Terschellingse Bosspitsmuis, Sorex araneus pulcher (Zalesky, 1937) en Gegevens over Bosspitsmuizen Van Het Nederlandse Vasteland, Uit België en Noord-Frankrijk. Amsterdam: Zoölogisch Museum, University of Amsterdam.Google Scholar
Vasiljev, A. G. and Sharova, L. P. (1992). The geographical and chronographical correlation of common shrew variability on Ural Mountains. In Morphological and Craniometric Variation in Small Mammals. Ekaterinburg: Nauka, Ural Division, pp. 94108. (In Russian).Google Scholar
Volobouev, V. T. (1989). Phylogenetic relationships of the Sorex araneus-arcticus species complex (Insectivora, Soricidae) based on high-resolution chromosome analysis. Journal of Heredity, 80, 284–90.Google Scholar
Volobouev, V. T. and Catzeflis, F. (1989). Mechanisms of chromosomal evolution in three European species of the Sorex araneus-arcticus group (Insectivora: Soricidae). Zeitschrift für zoologische Systematik und Evolutions-forschung, 27, 252–62.Google Scholar
Wallace, B. M. N. and Searle, J. B. (1990). Synaptonemal complex studies of the common shrew (Sorex araneus). Comparison of Robertsonian heterozygotes and homozygotes by light microscopy. Heredity, 65, 359–67.Google Scholar
White, T. A. and Searle, J. B. (2007a). Factors explaining increased body size in common shrews (Sorex araneus) on Scottish islands. Journal of Biogeography, 34, 356–63.Google Scholar
White, T. A. and Searle, J. B. (2007b). Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Molecular Ecology, 16, 2005–16.Google Scholar
White, T. A. and Searle, J. B. (2008). The colonization of Scottish islands by the common shrew, Sorex araneus (Eulipotyphla: Soricidae). Biological Journal of the Linnean Society, 94, 797808.Google Scholar
White, T. A. and Searle, J. B. (2009). Ecomorphometric variation and sexual dimorphism in the common shrew (Sorex araneus). Journal of Evolutionary Biology, 22, 1163–71.Google Scholar
Wójcik, J. M., Bogdanowicz, W., Pucek, Z., and Zalewska, A. (2000). Morphometric variation of the common shrew Sorex araneus in Poland, in relation to karyotype. Acta Theriologica, 45 (Suppl. 1), 161–72.Google Scholar
Wójcik, J. M., Polly, P. D., Wójcik, A. M., and Sikorski, M. D. (2007). Epigenetic variation of the common shrew, Sorex araneus, in different habitats. Russian Journal of Theriology, 6, 43–9.Google Scholar
Wójcik, J. M., Ratkiewicz, M., and Searle, J. B. (2002). Evolution of the common shrew, Sorex araneus: chromosomal and molecular aspects. Acta Theriologica, 47 (Suppl. 1), 139–67.Google Scholar
Wójcik, J. M. and Searle, J. B. (1988). The chromosome complement of Sorex granarius – the ancestral karyotype of the common shrew (Sorex araneus)? Heredity, 61, 225–9.Google Scholar
Wójcik, J. M. and Wójcik, A. M. (1994). Protein variation in the common shrew (Sorex araneus) in Poland, in relation to karyotype. Folia Zoologica, 43 (Suppl. 1), 5361.Google Scholar
Wójcik, J. M., Wójcik, A. M., and Sikorski, M. D. (2003). Morphometric variation of the common shrew, Sorex araneus, in different habitats. Mammalia, 67, 225–31.Google Scholar
Wyttenbach, A., Goudet, J., Cornuet, J. M., and Hausser, J. (1999). Microsatellite variation reveals low genetic subdivision in a chromosome race of Sorex araneus (Mammalia, Insectivora). Journal of Heredity, 90, 323–7.Google Scholar
Yannic, G., Dubey, S., Hausser, J., and Basset, P. (2010). Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group. Molecular Phylogenetics and Evolution, 57, 1062–71.CrossRefGoogle ScholarPubMed
Yannic, G., Pellissier, L., Dubey, S., et al. (2012). Multiple refugia and barriers explain the phylogeography of the Valais shrew, Sorex antinorii (Mammalia: Soricomorpha). Biological Journal of the Linnean Society, 105, 864–80.Google Scholar
Yaskin, V. A. (1989). Seasonal changes in brain and cranium size in small mammals. Zhurnal Obshchej Biologii, 50, 470–80. (In Russian, with English summary).Google Scholar
Ye, J., Biltueva, L., Huang, L., et al. (2006). Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Research, 14, 151–9.Google Scholar
Yom-Tov, Y. (2003). Body sizes of carnivores commensal with humans have increased over the past 50 years. Functional Ecology, 17, 323–7.Google Scholar
Yom-Tov, Y. and Yom-Tov, J. (2005). Global warming, Bergmann’s rule and body size in the masked shrew Sorex cinereus Kerr in Alaska. Journal of Animal Ecology, 74, 803–8.Google Scholar
Youngman, P. M. (1975). Publications in Zoology 10: Mammals of the Yukon Territory. Ottawa: National Museum of Natural Sciences.Google Scholar
Yudin, B. S. (1989). Insectivorous Mammals of Siberia. Novosibirsk: Nauka Publishing House. (In Russian).Google Scholar
Zaitsev, M. V. (1988). On the nomenclature of red-toothed shrews of the genus Sorex in the fauna of the USSR. Zoologicheskii Zhurnal, 67, 1878–88. (In Russian, with English summary).Google Scholar
Zalesky, K. (1948). Die Waldspitzmaus (Sorex araneus L.) in ihrer Beziehung zur Form tetragonurus Herm. in Nord- und Mitteleuropa. Sitzungsberichten der Österreich Akademie der Wissenschaften, Mathematisch-Naturwissenschaftlichen Abteilung I, 157, 9185.Google Scholar
Zhdanova, N. S., Fokina, V. M., Balloux, F., et al. (2003). Current cytogenetic map of the common shrew, Sorex araneus L.: localization of 7 genes and 4 microsatellites. Mammalia, 67, 285–93.CrossRefGoogle Scholar
Zhdanova, N. S., Karamisheva, T. V., Minina, J., et al. (2005). Unusual distribution pattern of telomeric repeats in the shrews Sorex araneus and Sorex granarius. Chromosome Research, 13, 617–25.Google Scholar
Zhigileva, O. N., Sheykina, Z. V., and Malkova, N. A. (2013). Allozyme variability in common shrew Sorex araneus of Western Siberia. Contemporary Problems of Ecology, 6, 603–8.Google Scholar
Zidarova, S. (2015). Is there sexual size dimorphism in shrews? A case study of six European species of the family Soricidae. Acta Zoologica Bulgarica, 67, 1934.Google Scholar
Zima, J. (1983). Chromosomes of the harvest mouse, Micromys minutus, from the Danube Delta (Muridae, Rodentia). Folia Zoologica, 32, 1922.Google Scholar
Zima, J. and Král, B. (1985). Karyotype variability in Sorex araneus in central Europe (Soricidae, Insectivora). Folia Zoologica, 34, 235–43.Google Scholar
Zima, J., Lukáčová, L., and Macholán, M. (1998). Chromosomal evolution in shrews. In Evolution of Shrews. ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 175218.Google Scholar
Zima, J., Macholán, M., Filippucci, M. G., et al. (1994). Karyotypic and biochemical status of certain marginal populations of Sorex araneus. Folia Zoologica, 43 (Suppl. 1), 4351.Google Scholar
Zima, J., Slivková, L., Andreas, M., Benda, P., and Reiter, A. (1997). Karyotypic status of shrews (Sorex) from Thrace, European Turkey. Zeitschrift für Säugetierkunde, 62, 315–17.Google Scholar
Zima, J., Wójcik, J. M., and Horáková, M. (1988). The number of karyotypic variants in the common shrew (Sorex araneus). Acta Theriologica, 33, 467–75.Google Scholar
Zubko, J.P. (1937). A new subspecies of the common shrew (Sorex araneus averini subsp. nova). Proceedings of the Zoological-Biological Institute, 4, 299303. (In Ukranian).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×