Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T11:46:04.608Z Has data issue: false hasContentIssue false

5 - Coproducts of fields

Published online by Cambridge University Press:  05 November 2011

P. M. Cohn
Affiliation:
University College London
Get access

Summary

One of the main results of Ch. 4 stated that every semifir has a universal field of fractions. This is now applied to show that every family of fields all having a common subfield can be embedded in a universal fashion in a field, their field coproduct. We begin in 5.1 by explaining the coproduct construction for groups (where it is relatively simple) and for rings, and derive some of the simpler consequences when the common subring is a field. When the factors themselves are fields, an elaboration of these results will show the ring coproduct of fields to be a fir (by an analogue of the weak algorithm, see Cohn [60, 61]), but we shall not follow this route, since it will appear as a consequence of more general later results.

The study of coproducts requires a good deal of notation; some of this is introduced in 5.2 and is used there to define the module induced by a family of modules over the factor rings and compute its homological dimension. In 5.3 we prove the important coproduct theorems of Bergman [74]: If R is the ring coproduct of a family (Rλ) of rings, taken over a field K, then (i) the global dimension of R is the supremum of the global dimensions of the factors (or possibly 1 if all the factors have global dimension 0) (Th. 3.5), (ii) the monoid of projectives P(R) is the coproduct of the P(Rλ) over P(K) (Th. 3.8).

Type
Chapter
Information
Skew Fields
Theory of General Division Rings
, pp. 202 - 277
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Coproducts of fields
  • P. M. Cohn, University College London
  • Book: Skew Fields
  • Online publication: 05 November 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139087193.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Coproducts of fields
  • P. M. Cohn, University College London
  • Book: Skew Fields
  • Online publication: 05 November 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139087193.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Coproducts of fields
  • P. M. Cohn, University College London
  • Book: Skew Fields
  • Online publication: 05 November 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139087193.008
Available formats
×