Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T20:07:01.352Z Has data issue: false hasContentIssue false

7 - Global Optimization and Space Pruning for Spacecraft Trajectory Design

Published online by Cambridge University Press:  06 December 2010

Dario Izzo
Affiliation:
European Space Agency, Advanced Concepts Team, Noordwijk, NL
Bruce A. Conway
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Introduction

Global optimization algorithms and space pruning methods represent a recent new paradigm for spacecraft trajectory design. They promise an automated and unbiased search of different trajectory options, freeing the final user from the need for caring about implementation details. In this chapter we provide a unified framework for the definition of trajectory problems as pure mathematical optimization problems highlighting their common nature. We then present the detailed definition of two popular typologies, the Multiple Gravity Assist (MGA) and the Multiple Gravity Assist with single Deep Space Manouver (MGA-1DSM). Later we describe in detail the instantiation of four particular problems proposing them as a test set to benchmark the performances of different algorithms and pruning solutions. We take inspiration from real interplanetary trajectories such as Cassini, Rosetta, and the proposed TandEM mission, considering a large search space in terms of possible launch windows and transfer times, but also from rather academic cases such as that of the First Global Trajectory Optimisation Competition (GTOC). We test four popular heuristic paradigms on these problems (differential evolution, particle swarm optimization, simulated annealing with adaptive neighborhood, and genetic algorithm) and note their poor performances both in terms of reliability and solution quality, arguing for the need to use more sophisticated approaches, for example, pruning methods, to allow finding better trajectories. We then introduce the cluster pruning method for the MGA-1DSM problem and we apply it, in combination with the simulated annealing with adaptive neighborhood algorithm, to the TandEM test problem finding a large number of good solutions and a new putative global optima.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wertz, J., Larson, W., Kirkpatrick, D., and Klungle, D. (1999) Space Mission Analysis and Design, Microcosm Press.Google Scholar
[2] Battin, R. (1999) An Introduction to the Mathematics and Methods of Astrodynamics, AIAA.Google Scholar
[3] Izzo, D., Becerra, V., Myatt, D., Nasuto, S., and Bishop, J. (2007) Search Space Pruning and Global Optimisation of Multiple Gravity Assist Spacecraft Trajectories, Journal of Global Optimization, 38, No. 2, 283–296.CrossRefGoogle Scholar
[4] Vasile, M., and De Pascale, P. (2006) Preliminary Design of Multiple Gravity-Assist Trajectories, Journal of Spacecraft and Rockets, 43, No. 4, 794–805.CrossRefGoogle Scholar
[5] Biesbroek, R., and Ancarola, B. (2002) Optimization of Launcher Performance and Interplanetary Trajectories for Pre-Assessment Studies. IAF abstracts, 34th COSPAR Scientific Assembly, The Second World Space Congress, held 10-19 October, in Houston, TX, USA., pA-6-07IAF.Google Scholar
[6] Izzo, D. (2006) Advances in Global Optimisation for Space Trajectory Design. Proceedings of the international symposium on space technology and science, 25, p. 563.Google Scholar
[7] Izzo, D., Vinkó, T., and Del Rey Zapatero, M. (2007) GTOP Database: Global Trajectory Optimisation Problems and Solutions. Web resource, http://www.esa.int/gsp/ACT/inf/op/globopt.htm
[8] Vinkó, T., Izzo, D., and Bombardelli, C. (2007) Benchmarking Different Global Optimisation Techniques for Preliminary Space Trajectory Design. Paper IAC-07-A1.3.01, 58th International Astronautical Congress, Hyderabad, India.Google Scholar
[9] Myatt, D., Becerra, V., Nasuto, S., and Bishop, J. (2004) Advanced Global Optimisation Tools for Mission Analysis and Design. Tech. Rep. 03-4101a, European Space Agency, the Advanced Concepts Team, available online at www.esa.int/act
[10] Storn, R., and Price, K. (1997) Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11, No. 4, 341–359.CrossRefGoogle Scholar
[11] Kennedy, J., and Eberhart, R. (1995) Particle Swarm optimization. Proceedings, IEEE International Conference on Neural Networks, 4.CrossRefGoogle Scholar
[12] Blackwell, T., and Branke, J. (2004) Multi-Swarm Optimization in Dynamic Environments. Lecture Notes in Computer Science, 3005, 489–500.CrossRefGoogle Scholar
[13] Corana, A., Marchesi, M., Martini, C., and Ridella, S. (1987) Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm. ACM Transactions on Mathematical Software (TOMS), 13, No. 3, 262–280.CrossRefGoogle Scholar
[14] Holland, J. (1992) Genetic Algorithms Computer Programs That “Evolve” in Ways That Resemble Natural Selection Can Solve Complex Problems Even Their Creators Do Not Fully Understand. Scientific American, 267, 1992, 66–72.CrossRefGoogle Scholar
[15] Izzo, D., Rucinski, M., and Ampatzis, C. (2009) Parallel Global Optimisation Meta-Heuristics using an Asynchronous Island-model. IEEE Congress on Evolutionary Computation (IEEE CEC 2009), Trondheim, Norway, May 18-21.CrossRefGoogle Scholar
[16] Wales, D., and Doye, J. (1997) Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of Physical Chemistry, 101, No. 28, 5111–5116.CrossRefGoogle Scholar
[17] Armellin, R., Di Lizia, P., Topputo, F., and Zazzera, F. (2008) Gravity Assist Space Pruning Based on Differential Algebra. New Trends in Astrodynamics and Applications V, Milano, June 30th–July 2nd.Google Scholar
[18] Schutze, O., Vasile, M., Junge, O., Dellnitz, M., and Izzo, D. (2009) Designing Optimal Low-Thrust Gravity-Assist Trajectories Using Space Pruning and a Multi-Objective Approach. Engineering Optimization, 41, 155–181.CrossRefGoogle Scholar
[19] Vasile, M., Ceriotti, M., Radice, G., Becerra, V., Nasuto, S., and Anderson, J. (2007) Global Trajectory Optimisation: Can We Prune the Solution Space When Considering Deep Space Manoeuvres? Tech. Rep. 06-4101c, European Space Agency, the Advanced Concepts Team, Available online at www.esa.int/actGoogle Scholar
[20] Zazzera, F., Lavagna, M., Armellin, R., Di Lizia, P., Topputo, F., and Bertz, M. (2007) Global Trajectory Optimisation: Can We Prune the Solution Space When Considering Deep Space Manoeuvres? Tech. Rep. 06-4101b, European Space Agency, the Advanced Concepts Team, Available online at www.esa.int/actGoogle Scholar
[21] Olympio, J., and Marmorat, J. (2007) Global Trajectory Optimisation: Can We Prune the Solution Space When Considering Deep Space Manoeuvres? Tech. Rep. 06-4101a, European Space Agency, the Advanced Concepts Team, available online at www.esa.int/actGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×