Published online by Cambridge University Press: 06 December 2010
Introduction
A spacecraft in flight is a dynamical system. As dynamical systems go, it is comparatively straightforward; the equations of motion are continuous and deterministic, for the unforced case they are essentially integrable, and perturbations, such as the attractions of bodies other than the central body, are usually small. The difficulties arise when the complete problem, corresponding to a real space mission, is considered. For example, a complete interplanetary flight, beginning in Earth orbit and ending with insertion into Mars orbit, has complicated, time-dependent boundary conditions, straightforward equations of motion but requires coordinate transformations when the spacecraft transitions from planet-centered to heliocentric flight (and vice versa), and likely discrete changes in system states as the rocket motor is fired and the spacecraft suddenly changes velocity and mass. If low-thrust electric propulsion is used, the system is further complicated as there no longer exist integrable arcs and the decision variables, which previously were discrete quantities such as the times, magnitudes and directions of rocket-provided impulses, now also include continuous time histories, that is, of the low-thrust throttling and of the thrust pointing direction. In addition, it may be optimizing to use the low-thrust motor for finite spans of time and “coast” otherwise, with the optimal number of these thrust arcs and coast arcs a priori unknown.
Since the cost of placing a spacecraft in orbit, which is usually the first step in any trajectory, is so enormous, it is particularly important to optimize space trajectories so that a given mission can be accomplished with the lightest possible spacecraft and within the capabilities of existing (or affordable) launch vehicles.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.