Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T19:43:52.111Z Has data issue: false hasContentIssue false

18 - An Investigation of Species–Area Relationships in Marine Systems at Large Spatial Scales

from Part IV - The Species–Area Relationship in Applied Ecology

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

We examine species–area relationships (SARs) in the sea, a realm that is structured in fundamentally different ways to terrestrial systems. For example, the open seas and the benthic communities on their bottoms represent the largest ecosystems of the world, but are well connected due to the current systems and the presence of few barriers. This enables a considerable dispersal rate for many marine organisms, which subsequently has a high impact on the SAR in these systems. We provide some examples of studies in which marine SARs have been examined over very large spatial (latitudinal) scales and discuss why patterns in the marine realm might not follow terrestrial expectations. We also discuss some of the problems and limitations of constructing SARs in the marine realm and more generally. We argue that molecular tools probably represent the best opportunity for more detailed and uniform approaches to assessing sampled biodiversity in the future, particularly in the microbial realm, but this is not guaranteed. It will require a great deal of standardization in methods and procedures and a more detailed reporting of these procedures than is commonly the case today.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 438 - 456
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbrust, E. V. (2009) The life of diatoms in the world’s oceans. Nature, 459, 186192.CrossRefGoogle ScholarPubMed
Arntz, W. E. & Gallardo, V. A. (1994) Antarctic benthos: Present position and future prospects. Antarctic science (ed. by Hempel, G.), pp. 243277. Berlin: Springer Verlag.Google Scholar
Arntz, W. E., Gutt, J. & Klages, M. (1997) Antarctic marine biodiversity: An overview. Antarctic communities: Species structure and survival (ed. by Battaglia, B., Valencia, J. and Walton, D. W. H.), pp. 314. Cambridge: Cambridge University Press.Google Scholar
Arrhenius, O. (1921) Species and area. Journal of Ecology, 9, 9599.Google Scholar
Bluhm, B. A., Gebruk, A. V., Gradinger, R., Hopcroft, R. R., Huettmann, F., Kosobokova, K. N., Sirenko, B. & Weslawski, J. M. (2011) Arctic marine biodiversity: An update of species richness and examples of biodiversity change. Oceanography, 24, 232248.Google Scholar
Cermeno, P. & Falkowski, P. (2009) Controls on diatom biogeography in the ocean. Science, 325, 15391541.Google Scholar
Clarke, A. (2008) Antarctic marine benthic diversity: Patterns and processes. Journal of Experimental Marine Biology and Ecology, 366, 4855.CrossRefGoogle Scholar
Clarke, A. & Crame, J. A. (1997) Diversity, latitude and time: Patterns in shallow seas. Marine biodiversity: Patterns and processes (ed. by Ormond, R. F. G., Gage, J. D. and Angel, M. V.), pp. 122147. Cambridge: Cambridge University Press.Google Scholar
Clarke, A. & Johnston, N. M. (2003) Antarctic marine benthic diversity. Oceanography and Marine Biology: An Annual Review, 41, 47114.Google Scholar
Dayton, P. K. (1990) Polar benthos. Polar oceanography Part B: Chemistry, biology and geology (ed. by Smith, W. O. Jr.), pp. 631686. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Dayton, P. K., Mordida, B. J. & Bacon, F. (1994) Polar marine communities. American Zoologist, 34, 9099.CrossRefGoogle Scholar
Dell, R. K. (1972) Antarctic benthos. Advances in Marine Biology, 10, 1216.Google Scholar
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M. & Putnam, A. E. (2010) The last glacial termination. Science, 328, 16521656.Google Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology Letters, 9, 215227.CrossRefGoogle ScholarPubMed
Dunton, K. (1992) Arctic biogeography: The paradox of the marine benthic fauna and flora. Trends in Ecology & Evolution, 7, 183189.Google Scholar
Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology & Biogeography, 8, 95115.CrossRefGoogle Scholar
Foster, N. L., Foggo, A. & Howell, K. L. (2013) Using species–area relationships to inform baseline conservation targets for the deep North East Atlantic. PLoS ONE, 8, e58941.CrossRefGoogle ScholarPubMed
Gray, J. S. (2000) The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology, 250, 2349.Google Scholar
Gray, J. S., Ugland, K. I. & Lambshead, J. (2004) Species accumulation and species−area curves – a comment on Scheiner (2003). Global Ecology & Biogeography, 13, 473476.CrossRefGoogle Scholar
Grebmeier, J. M. & Barry, J. P. (1991) The influence of oceanographic processes on pelagic benthic coupling in polar regions: A benthic perspective. Journal of Marine Systems, 2, 498518.Google Scholar
Griffiths, H. J. (2010) Antarctic marine biodiversity – what do we know about the distribution of life in the Southern Ocean? PLoS One, 5, e11683.Google Scholar
Gutt, J. (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biology, 24, 553564.Google Scholar
Gutt, J., Griffiths, H. J. & Jones, C. D. (2013) Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Marine Biodiversity, 43, 481487.Google Scholar
Hawkins, S. J. & Hartnoll, R. G. (1980) A study of the small-scale relationship between species number and area on a rocky shore. Estuarine and Coastal Marine Science, 10, 201214.Google Scholar
Howell, K. I., Billet, D. S. M. & Tyler, P. A. (2002) Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 49, 19011920.Google Scholar
Hubert, C., Loy, A., Nickel, M., Arnosti, C., Baranyi, C., Brüchert, V., Ferdelman, T., Finster, K., Christensen, F. M., de Rezende, J. R., Vandieken, V. & Jörgensen, B. B. (2009) A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science, 325, 15411544.Google Scholar
Kendall, M. A. (1996) Are Arctic soft-sediment macrobenthic communities impoverished? Polar Biology, 16, 393399.CrossRefGoogle Scholar
Kloster, M., Kauer, G., Esper, O., Fuchs, N. & Beszteri, B. (2018) Morphometry of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment: High-throughput measurements show second morphotype occurring during glacials. Marine Micropaleontology, 143, 7079.Google Scholar
Kooistra, H. C. F., Sarno, D., Balzano, S., Gu, H., Anderson, R. A. & Zingone, A. (2008) Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist, 159, 177193.CrossRefGoogle ScholarPubMed
Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. (2014) Sea level and global ice volumes from the last glacial maximum to the holocene. Proceedings of the National Academy of Sciences USA, 11, 1529615303.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M. & Gonzalez, A. (2004) The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7, 601613.Google Scholar
Lomolino, M. V. (2001) The species−area relationship: New challenges for an old pattern. Progress in Physical Geography, 25, 121.Google Scholar
Lowe, J. J. & Walker, M. J. C. (1997) Reconstructing quaternary environments. London: Routledge.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A. & Bowler, D. E. (2016) Insights into global diatom distribution and diversity in the world’s ocean. Proceedings of the National Academy of Sciences USA, 113, E1516E1525.Google Scholar
Mann, D. G. & Vanormelingen, P. (2013) An inordinate fondness? The number, distributions and origins of diatom species. Eukaryotic Microbiology, 60, 414420.CrossRefGoogle ScholarPubMed
Marques, A. C. & Pena Cantero, A. L. (2010) Areas of endemism in the Antarctic – a case study of the benthic hydrozoan genus Oswaldella (Cnidaria, Kirchenpaueriidae). Journal of Biogeography, 37, 617623.CrossRefGoogle Scholar
McCallum, H. I., Kuris, A., Harvell, C. D., Lafferty, K. D., Smith, W. O. & Porter, J. (2004) Does terrestrial epidemiology apply to marine systems? Trends in Ecology & Evolution, 19, 586591.CrossRefGoogle Scholar
McClain, C. R. & Barry, J. P. (2010) Habitat heterogeneity, biogenic disturbance, and resource availability work in concert to regulate biodiversity in deep submarine canyons. Ecology, 91, 964976.CrossRefGoogle Scholar
McManus, M. A. & Woodson, C. B. (2012) Plankton distribution and ocean dispersal. Journal of Experimental Biology, 215, 10081016.CrossRefGoogle Scholar
Neigel, J. E. (2003) Species–area relationships and marine conservation. Ecological Applications, 13, S138S145.Google Scholar
Piepenburg, D. (2005) Recent research on Arctic benthos: Common notions need to be revised. Polar Biology, 28, 733755.Google Scholar
Preston, F. W. (1948) The commonness, and rarity, of species. Ecology, 29, 254283.Google Scholar
Preston, F. W. (1962) The canonical distribution of commonness and rarity: Part I. Ecology, 43, 185215.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. New York: Cambridge University Press.Google Scholar
Rosenzweig, M. L. (1999) Heeding the warning in biodiversity’s basic law. Science, 284, 276277.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W. & Rosenberg, G. (1998) Marine latitudinal diversity gradients: Tests of causal hypotheses. Proceedings of the National Academy of Sciences USA, 95, 36993702.Google Scholar
Sirenko, B. I. (2001) List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Exploration of the Fauna of the Seas, 51, pp. 1129. St. Petersburg: Russian Academy of Sciences.Google Scholar
Sirenko, B. I. & Piepenburg, D. (1994) Current knowledge on biodiversity and benthic zonation patterns of Eurasian Arctic shelf seas with special reference to the Laptev Sea. Russian−German cooperation in the Siberian shelf seas: Geo-system Laptev Sea. Berichte zur Polarforschung, 144 (ed. by Kassens, H., Hubberten, H. W., Prymikov, S. M. and Stein, R.), pp. 6977. Bremerhaven: Alfred Wegener Institute for Polar and Marine Research.Google Scholar
Sirenko, B. I., Clarke, C., Hopcroft, R. R., Huettmann, F., Bluhm, B. A. & Gradinger, R. (eds.) (2020) The Arctic Register of Marine Species (ARMS) compiled by the Arctic Ocean Diversity (ArcOD). www.marinespecies.org/armsGoogle Scholar
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdana, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A. & Robertson, J. (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience, 57, 573583.Google Scholar
Stern, R., Kraberg, A. C., Bresnan, E., Kooistra, H. C. F., Lovejoy, C., Montresor, M., Morán, X. A., Not, F., Salas, R., Siano, R., Vaulot, D., Amaral-Zettler, L., Zingone, A. & Metfies, K. (2018) Molecular analyses of protists in long-term observation programmes – current status and future perspectives. Journal of Plankton Research, 40, 519536.Google Scholar
Ugland, K. I., Gray, J. S. & Ellingsen, K. E. (2003) The species accumulation curve and estimation of species richness. Journal of Animal Ecology, 72, 888897.Google Scholar
Vasconcelos, R. P., Henriques, S., França, S., Pasquaud, S., Cardoso, I., Laborde, M. & Cabral, H. N. (2015) Global patterns and predictors of fish species richness in estuaries. Journal of Animal Ecology, 84, 13311341.Google Scholar
Ward, D. M., Weller, R. & Bateson, M. M. (1990) 165 ribosomal RNA sequences reveal numerous uncultured microorganisms in a natural community. Nature, 345, 6365.CrossRefGoogle Scholar
Webb, T. J. (2012) Marine and terrestrial ecology: Unifying concepts, revealing differences. Trends in Ecology & Evolution, 27, 535541.CrossRefGoogle ScholarPubMed
WORMS (2019) The World Register of Marine Species. http://marinespecies.org.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×