Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T02:29:26.506Z Has data issue: false hasContentIssue false

13 - The Identification of Biodiversity Hotspots Using the Species–Area Relationship

from Part IV - The Species–Area Relationship in Applied Ecology

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

Hotspot identification is a crucial strategy for setting conservation priorities. Since both the total number of species and the number of endemic species tend to increase with area, prioritizing sites according to their overall species richness or endemic species richness can produce rankings that simply mirror the sizes of the sites. Thus, it is important to control for the dependence of species number on site area. For this reason, some authors have proposed that the species–area relationship (SAR) and/or the endemics–area relationship (EAR) should be modelled and then the sites located above the fitted curve(s) (i.e. those having positive residuals) designated as hotspots. However, (1) there may be large uncertainties about which model provides the best fit to the SARs/EARs, (2) the use of residuals may lead to sites being identified as hotspots when they only have very few species and (3) there is no guarantee that the sites selected as hotspots by the SAR really include a large fraction of the overall diversity. Thus, it is important to evaluate the ability of the hotspots designated by these procedures to really conserve total and endemic species diversity; the best strategy may in fact be to use a combination of approaches.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 321 - 344
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S. (1994) Area and endemism. Quarterly Review of Biology, 69, 451471.Google Scholar
Araújo, M. B. (2002) Biodiversity hotspots and zones of ecological transition. Conservation Biology, 16, 16621663.CrossRefGoogle Scholar
Balletto, E., Bonelli, S., Borghesio, L., Casale, A., Brandmayr, P. & Vigna Taglianti, A. (2010) Hotspots of biodiversity and conservation priorities: A methodological approachItalian Journal of Zoology, 77, 213.Google Scholar
Barthlott, W., Lauer, W. & Placke, A. (1996) Global distribution of species diversity in vascular plants: Towards a world map of phytodiversity. Erdkunde, 50, 317327.Google Scholar
Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. (2004) Confronting the coral reef crisis. Nature, 429, 827833.CrossRefGoogle ScholarPubMed
Borregaard, M. K. & Rahbek, C. (2010) Causality of the relationship between geographic distribution and species abundance. The Quarterly Review of Biology, 85, 325.Google Scholar
Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., Rylands, A. B., Konstant, W. R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. & Hilton-Taylor, C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16, 909923.Google Scholar
Brummitt, N. & Nic Lughadha, E. (2003) Biodiversity: Where’s hot and where’s not. Conservation Biology, 17, 14421448.Google Scholar
Cadotte, M. W. & Davies, T. J. (2010) Rarest of the rare: Advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Diversity and Distributions, 16, 376385.Google Scholar
Cañadas, E. M., Fenu, G., Peñas, J., Lorite, J., Mattana, E. & Bacchetta, G. (2014) Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biological Conservation, 170, 282291.Google Scholar
Caro, T. M. (2010) Conservation by proxy: Indicator, umbrella, keystone, flagship, and other surrogate species. Washington, DC: Island Press.Google Scholar
Ceballos, G. & Brown, J. H. (1995) Global patterns of mammalian diversity, endemism, and endangerment. Conservation Biology, 9, 559568.Google Scholar
Ceballos, G. & Ehrlich, P. (2006) Global mammal distributions, biodiversity hotspots, and conservation. Proceedings of the National Academy of Sciences USA, 103, 1937419379.Google Scholar
Christenhusz, M. J. M. & Byng, J. W. (2016) The number of known plants species in the world and its annual increase. Phytotaxa, 261, 201217.Google Scholar
Conservation International (2005) Biodiversity hotspots: Hotspots by region. http://www.biodiversityhotspots.org/xp/Hotspots/hotspots_by_region.Google Scholar
Conservation International (2019) Biodiversity hotspots. www.conservation.org/How/Pages/Hotspots.aspx.Google Scholar
Daru, B. H., Bank, M. & Davies, T. J. (2015) Spatial incongruence among hotspots and complementary areas of tree diversity in southern Africa. Diversity and Distributions, 21, 769780.CrossRefGoogle Scholar
Dengler, J. (2009) Which function describes the species–area relationship the best? A review and empirical evaluation. Journal of Biogeography, 36, 728744.Google Scholar
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. & Mouquet, N. (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecology Letters, 13, 10301040.Google Scholar
Dobson, A. P., Rodriguez, J. P., Roberts, W. M. & Wilcove, S. S. (1997) Geographic distribution of endangered species in the United States. Science, 275, 550553.Google Scholar
Evans, E. C., Clark, P. J. & Brandt, R. H. (1955) Estimation of the number of species present in a given area. Ecology, 36, 342343.Google Scholar
Fattorini, S. (2006a) Detecting biodiversity hotspots by species–area relationships: A case study of Mediterranean beetles. Conservation Biology, 20, 11691180.Google Scholar
Fattorini, S. (2006b) A new method to identify important conservation areas applied to the butterflies of the Aegean Islands (Greece). Animal Conservation, 9, 7583.Google Scholar
Fattorini, S. (2007a) To fit or not to fit? A poorly fitting procedure produces inconsistent results when the species–area relationship is used to locate hotspots. Biodiversity and Conservation, 16, 25312538.CrossRefGoogle Scholar
Fattorini, S. (2007b) Levels of endemism are not necessarily biased by the co-presence of species with different size ranges: A case study of Vilenkin and Chikatunov’s models. Journal of Biogeography, 34, 9941007.Google Scholar
Fattorini, S. (2009) Assessing priority areas by imperilled species: Insights from the European butterflies. Animal Conservation, 12, 313320.Google Scholar
Fattorini, S. (2010a) Use of insect rarity for biotope prioritisation: The tenebrionid beetles of the Central Apennines (Italy). Journal of Insect Conservation, 14, 367378.Google Scholar
Fattorini, S. (2010b) Biotope prioritisation in the Central Apennines (Italy): Species rarity and cross-taxon congruence. Biodiversity and Conservation, 19, 34133429.Google Scholar
Fattorini, S. (2017) Endemism in historical biogeography and conservation biology: Concepts and implications. Biogeographia – The Journal of Integrative Biogeography, 32, 4775.Google Scholar
Fattorini, S., Dennis, R. L. H. & Cook, L. M. (2011) Conserving organisms over large regions requires multi-taxa indicators: One taxon’s diversity-vacant area is another taxon’s diversity zone. Biological Conservation, 144, 16901701.Google Scholar
Funk, S. M. & Fa, J. E. (2010) Ecoregion prioritization suggests an armoury not a silver bullet for conservation planning. PLoS One, 5, e8923.Google Scholar
Georghiou, K. & Delipetrou, P. (2010) Patterns and traits of the endemic plants of Greece. Botanical Journal of the Linnean Society, 162, 130422.Google Scholar
Grenyer, R., Orme, C. D., Jackson, S. F., Thomas, G. H., Davies, R. G., Davies, T. J., Jones, K. E., Olson, V. A., Ridgely, R. S., Rasmussen, P. C., Ding, T. S., Bennett, P. M., Blackburn, T. M., Gaston, K. J., Gittleman, J. L. & Owens, I. P. (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 9396.Google Scholar
Griffin, P. C. (1999) Endangered species diversity ‘hot spots’ in Russia and centers of endemism. Biodiversity and Conservation, 8, 497511.CrossRefGoogle Scholar
Guilhaumon, F., Gimenez, O., Gaston, K. J. & Mouillot, D. (2008) Taxonomic and regional uncertainty in species–area relationships and the identification of richness hotspots. Proceedings of the National Academy of Sciences USA, 105, 1545815463.Google Scholar
Hobohm, C. (2000) Plant species diversity and endemism on islands and archipelagos, with special reference to the Macaronesian Islands. Flora, 195, 924.CrossRefGoogle Scholar
Hobohm, C. (2003) Characterization and ranking of biodiversity hotspots: Centres of species richness and endemism. Biodiversity and Conservation, 12, 279287.Google Scholar
Hobohm, C. & Tucker, C. M. (2014) How to quantify endemism. Endemism in vascular plants, plant and vegetation, vol. 9 (ed. by Hobohm, C.), pp. 1148. Heidelberg: Springer.Google Scholar
Hobohm, C., Janišová, M., Steinbauer, M., Landi, S., Field, R., Vanderplank, S., Beierkuhnlein, C., Grytnes, J.-A., Vetaas, O. R., Fidelis, A., de Nascimento, L., Clark, V. R., Fernández-Palacios, J. M., Franklin, S., Guarino, R., Huang, J., Krestov, P., Ma, K., Onipchenko, V., Palmer, M. W., Simon, M. F., Stolz, C. & Chiarucci, A. (2019) Global endemics–area relationships of vascular plants. Perspectives in Ecology and Conservation, 17, 4149.Google Scholar
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences USA, 110, E2602E2610.Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Redding, D., Hartmann, K. & Moore, A. O. (2014) Global distribution and conservation of evolutionary distinctness in birds. Current Biology, 24, 919930.Google Scholar
Kareiva, P. & Marvier, M. (2003) Conserving biodiversity coldspots. American Scientist, 91, 344351.Google Scholar
Kier, G. & Barthlott, W. (2001) Measuring and mapping endemism and species richness: A new methodological approach and its application on the flora of Africa. Biodiversity and Conservation, 10, 15131529.Google Scholar
Kullberg, P., Toivonen, T., Montesino Pouzols, F., Lehtomäki, J., Di Minin, E. & Moilanen, A. (2015) Complementarity and area-efficiency in the prioritization of the global protected area network. PLoS One, 10, e0145231.Google Scholar
Maes, D., Gilbert, M., Titeux, N., Goffart, P. & Dennis, R. L. H. (2003) Prediction of butterfly diversity hotspots in Belgium: A comparison of statistically focused and land use-focused models. Journal of Biogeography, 30, 19071920.Google Scholar
Magurran, A. E. & McGill, B. J. (eds.) (2011) Biological diversity: Frontiers in measurement and assessment. Oxford: Oxford University Press.Google Scholar
Marchese, C. (2015) Biodiversity hotspots: A shortcut for a more complicated concept. Global Ecology & Conservation, 3, 297309.Google Scholar
Martín, H. G. & Goldenfeld, N. (2006) On the origin and robustness of power-law species–area relationships in ecology. Proceedings of the National Academy of Sciences USA, 103, 1031010315.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.Google Scholar
Mazel, F., Guilhaumon, F., Mouquet, N., Devictor, V., Gravel, D., Renaud, J., Cianciaruso, M. V., Loyola, R., Diniz-Filho, J. A., Mouillot, D. & Thuiller, W. (2014) Global hotspots of multifaceted mammal diversity. Global Ecology & Biogeography, 23, 836847.CrossRefGoogle Scholar
Mittermeier, R. A., Gil, P. R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J. & da Fonseconda, G. A. B. (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico City: Cemex.Google Scholar
Mittermeier, R. A., Myers, N., Robles-Gil, P. & Mittermeier, C. G. (eds.) (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico City: CEMEX and Agrupación Sierra Madre.Google Scholar
Mittermeier, R. A., Myers, N., Thomsen, J. B., da Fonseca, G. A. B. & Olivieri, S. (1998) Biodiversity hotspots and major tropical wilderness areas: Approaches to setting conservation priorities. Conservation Biology, 12, 516520.CrossRefGoogle Scholar
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. (2011) Global biodiversity conservation: The critical role of hotspots. Biodiversity hotspots (ed. by Zachos, F. E. and Habel, J. C.), pp. 322. London: Springer Publishers.Google Scholar
Myers, N. (1988) Threatened biotas: ‘Hotspots’ in tropical forests. Environmentalist, 8, 120.Google Scholar
Myers, N. (1990) The biodiversity challenge: Expanded hot-spots analysis. Environmentalist, 10, 243256.Google Scholar
Myers, N. & Mittermeier, R. A. (2003) Impact and acceptance of the hotspots strategy: Response to Ovadia and to Brummit and Lughadha. Conservation Biology, 17, 14491450.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853858.Google Scholar
Noss, R. (2016) Announcing the World’s 36th biodiversity hotspot: The North American Coastal Plain. www.cepf.net/stories/announcing-worlds-36th-biodiversity-hotspot-north-american-coastal-plain.Google Scholar
Noss, R. F., Platt, W. J., Sorrie, B. A., Weakley, A. S., Means, D. B., Costanza, J., Peet, R. K. & Richardson, D. (2015) How global biodiversity hotspots may go unrecognized: Lessons from the North American Coastal Plain. Diversity and Distributions, 21, 236244.Google Scholar
Orme, C. L., Davies, R. G., Burgess, M. H., Eigenbrod, F., Pickup, N. J., Olson, V. A., Webster, A. J., Ding, T., Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J. & Owens, I. P. (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 10161019.Google Scholar
Ovadia, O. (2003) Ranking hotspots of varying sizes: A lesson from the nonlinearity of the species–area relationship. Conservation Biology, 17, 14401441.Google Scholar
Pomeroy, D. (1993) Centres of high biodiversity in Africa. Conservation Biology, 7, 901907.CrossRefGoogle Scholar
Possingham, H. P. & Wilson, K. A. (2005) Turning up the heat on hotspots. Nature, 436, 919920.Google Scholar
Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C. & Gibbons, D. W. (1993a) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature, 365, 335337.Google Scholar
Prendergast, J., Wood, S., Lawton, J. & Eversham, B. (1993b) Correcting for variation in recording effort in analyses of diversity hotspots. Biodiversity Letters, 1, 3953.Google Scholar
Reid, W. V. (1998) Biodiversity hotspots. Trends in Ecology & Evolution, 13, 275280.Google Scholar
Roberts, C. M., McClean, C. J., Veron, J. E. N., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, F. W., Spalding, M., Wells, F., Vynne, C. & Werner, T. B. (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science, 295, 12801284.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. A. & Laurance, W. F. (2014) Remaining natural vegetation in the global biodiversity hotspots. Biological Conservation, 177, 1224.Google Scholar
Smith, T. B., Kark, S., Schneider, C. J., Wayne, R. K. & Moritz, C. (2001) Biodiversity hotspots and beyond: The need for preserving environmental transitions. Trends in Ecology & Evolution, 16, 431.CrossRefGoogle Scholar
Stattersfield, A. J., Crosby, M. J., Long, A. J. & Wege, D. C. (1998Endemic bird areas of the world: Priorities for biodiversity conservation. BirdLife Conservation Series 7. Cambridge, UK: BirdLife International.Google Scholar
Storch, D., Keil, P. & Jetz, W. (2012) Universal species–area and endemics–area relationships at continental scales. Nature, 488, 7881.Google Scholar
Stork, N. E., Habel, J. C. & Ladle, R. (2014) Can biodiversity hotspots protect more than tropical forest plants and vertebrates? Journal of Biogeography, 41, 421428.Google Scholar
Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., Stuart-Smith, J. F., Hill, N. A., Kininmonth, S. J., Airoldi, L., Becerro, M. A., Campbell, S. J., Dawson, T. P., Navarrete, S. A., Soler, G. A., Strain, E. M. A., Willis, T. J. & Edgar, G. J. (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversityNature, 501, 539542.Google Scholar
Thomasson, M. (1999) Réflexions sur la biodiversité: Richesse, originalité et endémicité floristiques. Acta Botanica Gallica, 146, 403419.Google Scholar
Tjørve, E. (2003) Shapes and functions of species–area curves: A review of possible models. Journal of Biogeography, 30, 827835.CrossRefGoogle Scholar
Tjørve, E. (2009) Shapes and functions of species–area curves (II): A review of new models and parameterizations. Journal of Biogeography, 36, 14351445.CrossRefGoogle Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Triantis, K. A., Mylonas, M. & Whittaker, R. J. (2008) Evolutionary species–area curves as revealed by single-island endemics: Insights for the inter-provincial species–area relationship. Ecography, 31, 401407.Google Scholar
Troumbis, A. Y. & Dimitrakopoulos, P. G. (1998) Geographic coincidence of diversity threatspots for three taxa and conservation planning in Greece. Biological Conservation, 84, 16.Google Scholar
Ulrich, W. & Buszko, J. (2005) Detecting biodiversity hotspots using species–area and endemics–area relationships: The case of butterflies. Biodiversity and Conservation, 14, 19771988.Google Scholar
Ungricht, S. (2004) How many plant species are there? And how many are threatened with extinction? Endemic species in global biodiversity and conservation assessments. Taxon, 53, 481484.Google Scholar
Veech, J. A. (2000) Choice of species–area function affects identification of hotspots. Conservation Biology, 14, 140147.Google Scholar
Vilenkin, B. Y. & Chikatunov, V. I. (1998) Co-occurrence of species with various geographical ranges, and correlation between area size and number of species in geographical scale. Journal of Biogeography, 25, 275284.Google Scholar
Vilenkin, B. Y. & Chikatunov, V. I. (2000) Participation of species with different zoogeographical ranks in the formation of local fauna: A case study. Journal of Biogeography, 27, 12011208.CrossRefGoogle Scholar
Vilenkin, B. Y., Chikatunov, V. I., Coad, B. W. & Schileyko, A. A. (2009) A random process may control the number of endemic species. Biologia, 64, 107112.Google Scholar
Williams, K. J., Ford, A., Rosauer, D. F., De Silva, N., Mittermeier, R., Bruce, C., Larsen, F. W. & Margules, C. (2011) Forests of East Australia: The 35th biodiversity hotspot. Biodiversity hotspots (ed. by Habel, J. C. and Zachos, F.), pp. 295310. Heidelberg: Springer.Google Scholar
Williams, M. R., Lamont, B. B. & Henstridge, J. D. (2009) Species–area functions revisited. Journal of Biogeography, 36, 19942004.Google Scholar
Williams, P., Gibbons, D., Margules, C., Rebelo, A., Humphries, C. & Pressey, R. (1996) A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology, 10, 155174.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×