Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T22:38:32.081Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 January 2021

Victor J. Boucher
Affiliation:
Université de Montréal
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Study of Speech Processes
Addressing the Writing Bias in Language Science
, pp. 244 - 304
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbs, J. H. (1973). Some mechanical properties of lower lip movement during speech production. Phonetica, 28, 6575. doi:10.1159/000259446Google Scholar
Abbs, J. H. (ed.) (1996). Mechanisms of speech motor execution and control. St. Louis, MS: Mosby.Google Scholar
Abbs, J. H., & Eilenberg, G. R. (1976). Peripheral mechanisms of speech motor control. In Lass, N. J. (ed.), Contemporary issues in experimental phonetics (pp. 139168). New York, NY: Academic Press.Google Scholar
Abercrombie, D. (1967). Elements of general phonetics. Edinburgh, UK: Edinburgh University Press.Google Scholar
Ackermann, H., Hage, S. R., & Ziegler, W. (2014). Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective. Behavioral and Brain Sciences, 37, 529546. doi:10.1017/S0140525X13003099CrossRefGoogle ScholarPubMed
Adesnik, H., & Naka, A. (2018). Cracking the function of layers in the sensory cortex. Neuron, 100, 10281043. doi:10.1016/j.neuron.2018.10.032CrossRefGoogle ScholarPubMed
Agostoni, E., & Hyatt, R. E. (1986). Static behavior of the respiratory system. In Fishman, A. P., Macklem, P. T., Mead, J., & Geiger, S. R. (eds.), Handbook of physiology: The respiratory system (Vol. 3, section 3, pp. 113130). Bethesda, MD: American Physiological Society.Google Scholar
Aitchison, J. (2000). The seeds of speech: Language origin and evolution. Cambridge, UK: Cambridge University Press.Google Scholar
Akhtar, N., & Tomasello, M. (2000). The social nature of words and word learning. In Golinkoff, R. M., Hirsh-Pasek, K., Bloom, L., & Smith, L. B. (eds.), Becoming a word learner: A debate on lexical acquisition (pp. 115135). New York, NY: Oxford University Press.Google Scholar
Akmajian, A., Demers, R. A., Farmer, A. K., et al. (2010). Linguistics: An introduction to language and communication (6th ed.). Cambridge, MA: MIT Press.Google Scholar
Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences, 13, 266271. doi:10.1016/0166-2236(90)90107-LGoogle Scholar
Allen, C. (1996/2009). Teleological notions in biology. In Zalta, E. N. (ed.), The Stanford encyclopedia of philosophy. Stanford, CA: Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2009/entries/teleology-biology/Google Scholar
Allwood, J., Hendrikse, A. P., & Ahlsén, E. (2010). Words and alternative basic units for linguistic analysis. In Henrichsen, P. J. (ed.), Linguistic theory and raw sound (pp. 9–26). Copenhagen, DK: Samfundslitteratur.Google Scholar
Ambridge, B. (2017). Syntactic categories in child language acquisition. In Cohen, H. & Lefebvre, C. (eds.), Handbook of categorization in cognitive science (pp. 567580). San Diego, CA: Elsevier.CrossRefGoogle Scholar
Ambridge, B., & Lieven, E. V. M. (2011). Child language acquisition: Contrasting theoretical approaches. Cambridge, UK: Cambridge University Press.Google Scholar
Ambridge, B., & Lieven, E. V. M. (2015). A constructivist account of child language acquisition. In Macwhinney, B. & O’Grady, W. (eds.), The handbook of language emergence (pp. 478503). Hoboken, NJ: Wiley.Google Scholar
Amerman, J. D., Daniloff, R., & Moll, K. L. (1970). Lip and jaw coarticulation for the phoneme/æ/. Journal of Speech, Language, and Hearing Research, 13, 147161.Google Scholar
Anderson, S. R. (1981). Why phonology isn’t “natural.Linguistic Inquiry, 12, 493539.Google Scholar
Anderson, S. R. (1985). Phonology in the twentieth century. Chicago, IL: Chicago University Press.Google Scholar
Anderson, S. R., & Lightfoot, D. W. (2002). The language organ: Linguistics as cognitive physiology. Cambridge UK: Cambridge University Press.CrossRefGoogle Scholar
Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28, 105124. doi:10.1017/S0140525X05000038CrossRefGoogle ScholarPubMed
Arbib, M. A. (2011). From mirror neurons to complex imitation in the evolution of language and tool use. Annual Review of Anthropology, 40, 257273. doi:10.1146/annurev-anthro-081309-145722Google Scholar
Arbib, M. A. (2012). How the brain got language: The mirror system hypothesis. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Arbib, M. A. (2015). Language evolution. In MacWhinney, B. & O’Grady, W. (eds.), The handbook of language emergence (pp. 600623). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Arbib, M. A., Liebal, K., & Pika, S. (2008). Primate vocalization, gesture, and the evolution of human language. Current Anthropology, 49, 10531076. doi:10.1086/593015CrossRefGoogle ScholarPubMed
Archibald, L. M., & Gathercole, S. E. (2007). Nonword repetition and serial recall: Equivalent measures of verbal short-term memory? Applied Psycholinguistics, 28, 587606. doi:10.1017/S0142716407070324Google Scholar
Argyropoulos, G. P. (2011). Cerebellar theta-burst stimulation selectively enhances lexical associative priming. The Cerebellum, 10, 540550. doi:10.1007/s12311-011-0269-yCrossRefGoogle ScholarPubMed
Arlman-Rupp, A. J. L., van Niekerk de Haan, D., & van de Sandt-Koenderman, M. (1976). Brown’s early stages: Some evidence from Dutch. Journal of Child Language, 3, 267274. doi:10.1017/S0305000900001483CrossRefGoogle Scholar
Aronoff, M. (1992). Segmentalism in linguistics: The alphabetic basis of phonological theory. In Downing, P., Lima, S. D., & Noonan, M. (eds.), The linguistics of literacy (pp. 7182). Philadelphia, PA: John Benjamins.Google Scholar
Arrigo, A., Mormina, E., Anastasi, G. P., et al. (2014). Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00987Google Scholar
Arrigoni, F., Romaniello, R., Nordio, A., et al. (2015). Learning to live without the cerebellum. NeuroReport, 26, 809813. doi:10.1097/WNR.0000000000000428Google Scholar
Aslin, R. N. (1993). Segmentation of fluent speech into words: Learning models and the role of maternal input. In Boysson-Bardies, B., Schonen, S., Jusczyk, P. W., McNeilage, P., & Morton, J. (eds.), Developmental neurocognition: Speech and face processing in the first year of life (Vol. 69, pp. 305315). Boston, MA: Kluwer Academic.Google Scholar
Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by 8-month-old infants. Psychological Science, 9, 321324. doi:10.1111/1467-9280.00063CrossRefGoogle Scholar
Auroux, S. (ed.) (2000). Histoire des idées linguistiques (Tome 3). Paris, FR: Mardaga.Google Scholar
Axmacher, N., Henseler, M. M., Jensen, O., et al. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107, 32283233. doi:10.1073/pnas.0911531107CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Koski, L., Zaidel, E., et al. (2006). Lateralization of the human mirror neuron system. The Journal of Neuroscience, 26, 29642970. doi:10.1523/jneurosci.2921-05.2006Google Scholar
Babiloni, C., Vecchio, F., Mirabella, G., et al. (2009). Hippocampal, amygdala, and neocortical synchronization of theta rhythms is related to an immediate recall during rey auditory verbal learning test. Human Brain Mapping, 30, 20772089. doi:10.1002/hbm.20648Google Scholar
Bagur, S., & Benchenane, K. (2018). Taming the oscillatory zoo in the hippocampus and neo-cortex: A review of the commentary of Lockmann and Tort on Roy et al. Brain Structure and Function, 223, 59. doi:10.1007/s00429-017-1569-xGoogle Scholar
Bak, T. H., O’Donovan, D. G., Xuereb, J. H., et al. (2001). Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease–dementia–aphasia syndrome. Brain, 124, 103120. doi:10.1093/brain/124.1.103CrossRefGoogle ScholarPubMed
Baken, R. J., & Orlikoff, R. F. (2000). Clinical measurement of speech and voice. San Diego, CA: Singular.Google Scholar
Baker, M. C. (2009). Language universals: Abstract but not mythological. Behavioral and Brain Sciences, 32, 448449. doi:10.1017/S0140525X09990604Google Scholar
Bally, C. (1950). Linguistique générale et linguistique française. Berne, CH: Francke.Google Scholar
Barlow, S. M., & Andreatta, R. D. (1999). Handbook of clinical speech physiology. San Diego, CA: Singular.Google Scholar
Baroni, A. (2011). Alphabetic vs. non-alphabetic writing: Linguistic fit and natural tendencies. Italian Journal of Linguistics/Rivista di Linguistica, 23, 127159.Google Scholar
Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22, 637660. doi:10.1017/s0140525x99532147CrossRefGoogle Scholar
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617645. doi:10.1146/annurev.psych.59.103006.093639Google Scholar
Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 12811289. doi:10.1098/rstb.2008.0319Google Scholar
Barsalou, L. W. (2015). Situated conceptualization: Theory and applications. In Coello, Y. & Fischer, M. H. (eds.), Perceptual and emotional embodiment (pp. 1945). London, UK: Routledge.Google Scholar
Barsalou, L. W., Santos, A., Simmons, W. K., et al. (2008). Language and simulation in conceptual processing. In De Vega, M., Glenberg, A. M., & Graesser, A. (eds.), Symbols, embodiment, and meaning (pp. 245283). Oxford, UK: Oxford University Press.Google Scholar
Barutchu, A., Crewther, D. P., & Crewther, S. G. (2009). The race that precedes coactivation: Development of multisensory facilitation in children. Developmental Science, 12, 464473. doi:10.1111/j.1467-7687.2008.00782.xGoogle Scholar
Bates, E., Chen, S., Li, P., et al. (1993). Where is the boundary between compounds and phrases in Chinese? A reply to Shou et al. Brain and Language, 45, 94107. doi:10.1006/brln.1993.1036Google Scholar
Bates, E., Chen, S., Tzeng, O., et al. (1991). The noun-verb problem in Chinese aphasia. Brain and Language, 41, 203233. doi:10.1016/0093-934x(91)90153-rGoogle Scholar
Bates, E., & Goodman, J. C. (2001). On the inseparability of grammar and the lexicon: Evidence from acquisition. In Tomasello, M. & Bates, E. (eds.), Language development: The essential readings (pp. 134162). Malden, MA: Blackwell.Google Scholar
Bathnagar, S. C. (2012). Neuroscience for the study of communicative disorders. Philadelphia, PA: Wolters Kluwer; Lippincott Williams & Wilkins.Google Scholar
Bear, M. F., Connors, B. W., & Paradiso, A. P. (2016). Neuroscience: Exploring the brain (4th ed.). Philadelphia, PA: Lippincott.Google Scholar
Beaugrande, R., & Dressler, W. (1981). Introduction to text linguistics. London, UK: Longman.Google Scholar
Beck, D. (1999). Words and prosodic phrasing in Lushootseed narrative. In Hall, T. A. & Kleinhentz, U. (eds.), Amsterdam studies in the theory and history of linguistic science (Series 4, pp. 2346). Amstedam, NL: John Benjamins.Google Scholar
Beckner, C., Ellis, N. C., Blythe, R., et al. (2009). Language is a complex adaptive system: Position paper. Language Learning, 59, 126. doi:10.1111/j.1467-9922.2009.00533.xGoogle Scholar
Behme, C., & Deacon, S. H. (2008). Language learning in infancy: Does the empirical evidence support a domain specific language acquisition device? Philosophical Psychology, 21, 641671. doi:10.1080/09515080802412321CrossRefGoogle Scholar
Behrens, H. (2006). The input–output relationship in first language acquisition. Language and Cognitive Proceses, 21, 224. doi:10.1080/01690960400001721CrossRefGoogle Scholar
Belin, P. (2006). Voice processing in human and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 20912107. doi:10.1098/rstb.2006.1933CrossRefGoogle ScholarPubMed
Bellugi, U., Poizner, H., & Klima, E. S. (1989). Language, modality and the brain. Trends in Neurosciences, 12, 380388. doi:10.1016/0166-2236(89)90076-3CrossRefGoogle ScholarPubMed
Bencini, G. M. L. (2017). Speech errors as a window on language and thought: A cognitive science perspective. Altre Modernità. doi:10.13130/2035-7680/8316Google Scholar
Beres, A. M. (2017). Time is of the essence: A review of electroencephalography (EEG) and event-related brain potentials (ERPs) in language research. Applied Psychophysiology and Biofeedback, 42, 247255. doi:10.1007/s10484-017-9371-3Google Scholar
Berg, T. (2006). A structural account of phonological paraphasias. Brain and Language, 96, 331356. doi:10.1016/j.bandl.2006.01.005CrossRefGoogle ScholarPubMed
Berke, J. D., Breck, J. T., & Eichenbaum, H. (2009). Striatal versus hippocampal representations during win-stay maze performance. Journal of Neurophysiology, 101, 15751587. doi:10.1152/jn.91106.2008CrossRefGoogle ScholarPubMed
Bertelson, P., & De Gelder, B. (1991). The emergence of phonological awareness: Comparative approaches. In Mattingly, I. G. & Studdert-Kennedy, M. (eds.), Modularity and the motor theory of speech perception (pp. 393412). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Bertelson, P., Gelder, B., Tfouni, L. V., et al. (1989). Metaphonological abilities of adult illiterates: New evidence of heterogeneity. European Journal of Cognitive Psychology, 1, 239250. doi:10.1080/09541448908403083CrossRefGoogle Scholar
Berthoud-Papandropoulou, I. (1978). An experimental study of children’s ideas about language. In Sinclair, A., Jarvella, R. J., & Levelt, W. J. M. (eds.), The child’s conception of language (pp. 5564). Berlin, DE: Springer.CrossRefGoogle Scholar
Berwick, R. C., & Chomsky, N. (2015). Why only us: Language and evolution. Cambridge, MA: MIT Press.Google Scholar
Berwick, R. C., Chomsky, N., & Piattelli-Palmarini, M. (2013). Poverty of the stimulus stands: Why recent challenges fail. In Piattelli-Palmarini, M. & Berwick, R. C. (eds.), Rich languages from poor inputs (pp. 1942). Oxford, UK: Oxford University Press.Google Scholar
Best, C. T. (1993). Emergence of language-specific constraints in perception of non-native speech: A window on early phonological development. In Boysson-Bardies, B. d., Schonen, S. d., Jusczyk, P. W., McNeilage, P., & Morton, J. (eds.), Developmental neurocognition: Speech and face processing in the first year of life (Vol. 69, pp. 289304). Boston, MA: Kluwer Academic.Google Scholar
Best, C. C., & McRoberts, G. W. (2003). Infant perception of non-native consonant contrasts that adults assimilate in different ways. Language and Speech, 46, 183216. doi:10.1177/00238309030460020701Google Scholar
Beurrier, C., Garcia, L., Bioulac, B., et al. (2002). Subthalamic nucleus: A clock inside basal ganglia? Thalamus & Related Systems, 2, 18. doi:10.1016/S1472-9288(02)00033-XGoogle Scholar
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. TRENDS in Cognitive Sciences, 15, 527536. doi:10.1016/j.tics.2011.10.001Google Scholar
Binder, J. R., Desai, R. H., Graves, W. W., et al. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796. doi:10.1093/cercor/bhp055CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (1983). Linguistic impairment after left hemidecortication for infantile hemiplegia? A reappraisal. Quarterly Journal of Experimental Psychology, 35A, 199207. doi:10.1080/14640748308402125Google Scholar
Blake, J., Quartaro, G., & Onorati, S. (1993). Evaluating quantitative measures of grammatical complexity in spontaneous speech samples. Journal of Child Language, 20, 139152. doi:10.1017/S0305000900009168Google Scholar
Blakemore, S.-J., Frith, C. D., & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. NeuroReport, 12, 18791884. doi:10.1097/00001756-200107030-00023Google Scholar
Bloomfield, L. (1933). Language. New York, NY: Holt, Rinehart & Wiston.Google Scholar
Bohsali, A., & Crosson, B. (2016). The basal ganglia and language: A tale of two loops. In Soghomonian, J.-J. (ed.), The basal ganglia (pp. 217242). Switzerland, CH: Springer.Google Scholar
Bolhuis, J., Tattersal, J., Chomsky, I., N., et al. (2012). How could language have evolved? PLoS Biol, 12, e1001934. doi:10.1371/journal.pbio.1001934Google Scholar
Boliek, C. A., Hixon, T. J., Watson, P. J., et al. (2009). Refinement of speech breathing in healthy 4- to 6-year-old children. Journal of Speech, Language, and Hearing Research, 52, 9901007. doi:10.1044/1092-4388(2009/07-0214)Google Scholar
Boomer, D. S., & Laver, J. D. M. (1968). Slips of the tongue. British Journal of Disorders of Communication, 3, 212. doi:10.3109/13682826809011435CrossRefGoogle ScholarPubMed
Borges, A. F. T., Giraud, A.-L., Mansvelder, H. D., et al. (2017). Scale-free amplitude modulation of neuronal oscillations tracks comprehension of accelerated speech. The Journal of Neuroscience, 38, 710722. doi:10.1523/jneurosci.1515-17.2017Google Scholar
Bosch-Bouju, C., Hyland, B., & Parr-Brownlie, L. (2013). Motor thalamus integration of cortical, cerebellar and basal ganglia information: Implications for normal and parkinsonian conditions. Frontiers in Computational Neuroscience, 7. doi:10.3389/fncom.2013.00163Google Scholar
Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Reviews Neuroscience, 19, 338350. doi:10.1038/s41583-018-0002-7Google Scholar
Botha, R. P. (1979a). External evidence in the validation of mentalistic theories: A Chomskyan paradox. Lingua, 48, 299328. doi:10.1016/0024-3841(79)90055-XGoogle Scholar
Botha, R. P. (1979b). Methodological bases of a progressive mentalism. Stellenbosch Papers in Linguistics, 3, 1–115. doi:10.5774/3-0-121Google Scholar
Bouchard, D. (2015). Brain readiness and the nature of language. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.01376Google Scholar
Boucher, V. J. (1994). Alphabet-related biases in psycholinguistic enquiries: Considerations for direct theories of speech production and perception. Journal of Phonetics, 22, 118. doi:0.1016/S0095-4470(19)30264-5Google Scholar
Boucher, V. J. (2002). Timing relations in speech and the identification of voice-onset times: A stable perceptual boundary for voicing categories across speaking rates. Perception & Psychophysics, 64, 121130. doi:10.3758/BF03194561Google Scholar
Boucher, V. J. (2006). On the function of stress rhythms in speech: Evidence of a link with grouping effects on serial memory. Language and Speech, 49, 495519. doi:10.1177/00238309060490040301Google Scholar
Boucher, V. J. (2008). Intrinsic factors of cyclical motion in speech articulators: Reappraising postulates of serial-ordering in motor-control theories. Journal of Phonetics, 36, 295307. doi:10.1016/j.wocn.2007.06.002Google Scholar
Boucher, V. J., & Ayad, T. (2010). Physiological attributes of vocal fatigue and their acoustic effects: A synthesis of findings for a criterion-based prevention of acquired voice disorders. Journal of Voice, 24, 324336. doi:10.1016/j.jvoice.2008.10.001CrossRefGoogle ScholarPubMed
Boucher, V. J., Gilbert, A. C., & Jemel, B. (2019). The role of low-frequency neural oscillations in speech processing: Revisiting delta entrainment. Journal of Cognitive Neuroscience, 31, 1205–1215. doi:10.1162/jocn_a_01410%M30990387Google Scholar
Boucher, V. J., Gilbert, A. C., & Rossier-Bisaillon, A. (2018). The structural effects of modality on the rise of symbolic language: A rebuttal of evolutionary accounts and a laboratory demonstration. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.02300Google Scholar
Boucher, V. J., & Lalonde, B. (2015). Effects of the growth of breath capacities on mean length utterances: How maturing production processes influence indices of language development. Journal of Phonetics, 52, 5869. doi:10.1016/j.wocn.2015.04.005Google Scholar
Boucher, V. J., & Lamontagne, M. (2001). Effects of speaking rate on the control of vocal fold vibration: Clinical implications of active and passive aspects of devoicing. Journal of Speech, Language, and Hearing Research, 44, 10051014. doi:10.1044/1092-4388(2001/079)Google Scholar
Boulenger, V., Hauk, O., & Pulvermüller, F. (2008). Grasping ideas with the motor system: Semantic somatotopy in idiom comprehension. Cerebral Cortex, 19, 19051914. doi:10.1093/cercor/bhn217CrossRefGoogle ScholarPubMed
Boulenger, V., Mechtouff, L., Thobois, S., et al. (2008). Word processing in Parkinson’s disease is impaired for action verbs but not for concrete nouns. Neuropsychologia, 46, 743756. doi:10.1016/j.neuropsychologia.2007.10.007Google Scholar
Bowerman, M. (1990). Mapping thematic roles onto syntactic functions: Are children helped by innate linking rules? Linguistics, 28, 12531290. doi:10.1515/ling.1990.28.6.1253Google Scholar
Boyd, L. A., Edwards, J. D., Siengsukon, C. S., et al. (2009). Motor sequence chunking is impaired by basal ganglia stroke. Neurobiology of Learning and Memory, 92, 3544. doi:10.1016/j.nlm.2009.02.009Google Scholar
Bradley, L., & Bryant, P. (1985). Rhyme and reason in reading and spelling. Ann Arbour, MI: University of Michigan Press.Google Scholar
Branigan, H. P., & Pickering, M. J. (2016). An experimental approach to linguistic representation. Behavioral and Brain Sciences, 40, e282. doi:10.1017/S0140525X16002028Google Scholar
Brauer, J., Anwander, A., & Friederici, A. D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21, 459466. doi:10.1093/cercor/bhq108Google Scholar
Bresnan, J. (1982). The mental representation of grammatical reactions. Cambridge, MA: MIT Press.Google Scholar
Broca, P. (1861). Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bulletin de la Société Anatomique, 6, 330357.Google Scholar
Browman, C. P. (1994). Lip aperture and consonant releases. In Keating, P. A. (ed.), Phonological structure and phonetic form: Papers in laboratory phonology III (pp. 331353). Cambridge, UK: Cambridge University Press.Google Scholar
Browman, C. P., & Goldstein, L. (1984). Dynamic modeling of phonetic structure. Haskins Laboratories Report on Speech Research, SR-79/80, 117.Google Scholar
Browman, C. P., & Goldstein, L. (1985). Dynamic modeling of phonetic structure. In Fromkin, V. A. (ed.), Phonetic linguistics. Essays in honor of Peter Ladefoged (pp. 3553). Orlando, FA: Academic Press.Google Scholar
Browman, C. P., & Goldstein, L. (1990). Representation and reality: Physical systems and phonological structure. Journal of Phonetics, 18, 411424.Google Scholar
Browman, C. P., & Goldstein, L. (1992). Articulatory phonology: An overview. Phonetica, 49, 155180. doi:10.1159/000261913Google Scholar
Browman, C. P., & Goldstein, L. (1993). Dynamics and articulatory phonology. Haskins Laboratories Status Report on Speech Research, SR-113, 5162.Google Scholar
Brown, R. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press.Google Scholar
Bryant, P., & Goswami, U. (2016). Phonological skills and learning to read. London, UK: Routledge.Google Scholar
Bulloch, M. J., Boysen, S. T., & Furlong, E. E. (2008). Visual attention and its relation to knowledge states in chimpanzees, Pan troglodytes. Animal Behaviour, 76, 11471155. doi:10.1016/j.anbehav.2008.01.033CrossRefGoogle Scholar
Butcher, P. A., Ivry, R. B., Kuo, S.-H., et al. (2017). The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks. Journal of Neurophysiology, 118, 16221636. doi:10.1152/jn.00451.2017Google Scholar
Buzsaki, G. (2006). Rhythms of the brain. New York, NY: Oxford University Press.Google Scholar
Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16, 130. doi:10.1038/nn.3304Google Scholar
Bybee, J. (2006). From usage to grammar: The mind’s response to repetition. Language, 82, 711733.Google Scholar
Bybee, J. (2010). Language, usage, and cognition. Cambridge, UK: Cambridge University Press.Google Scholar
Bybee, J. (2011). Usage‐based theory and grammaticalization. Oxford Handbooks Online. doi:10.1093/oxfordhb/9780199586783.013.0006Google Scholar
Bybee, J., & Beckner, C. (2009). A usage-based account of constituency and reanalysis. Language Learning, 59, 2746. doi:10.1111/j.1467-9922.2009.00534.xGoogle Scholar
Bybee, J., & McClelland, J. L. (2005). Alternatives to the combinatorial paradigm of linguistic theory based on domain general principles of human cognition. The Linguistic Review, 22, 381410. doi:10.1515/tlir.2005.22.2-4.381CrossRefGoogle Scholar
Byrd, D., Kaun, A., Narayanan, S., et al. (2000). Phrasal signatures in articulation. In Broe, M. B. & Pierrehumbert, J. B. (eds.), Papers in Laboratory Phonology V (pp. 7087). Cambridge, UK: Cambridge University Press.Google Scholar
Byrd, D., & Saltzman, E. (1998). Intragestural dynamics of multiple prosodic boundaries. Journal of Phonetics, 26, 173199. doi:10.1006/jpho.1998.0071Google Scholar
Byrd, D., & Saltzman, E. (2003). The elastic phase: Modeling the dynamics of boundary-adjacent lengthening. Journal of Phonetics, 31, 149180. doi:10.1016/S0095-4470(02)00085-2CrossRefGoogle Scholar
Cabrera, J. C. M. (2008). The written language bias in linguistic typology. Cuadernos de Lingüística del Instituto Universitario Investigación Ortega y Gasset, 15, 117137.Google Scholar
Cai, S., Ghosh, S. S., Guenther, F. H., et al. (2011). Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within-syllable and between-syllable speech timing. Journal of Neuroscience, 31, 1648316490. doi:10.1523/JNEUROSCI.3653-11.2011CrossRefGoogle ScholarPubMed
Calderone, D. J., Lakatos, P., Butler, P. D., et al. (2014). Entrainment of neural oscillations as a modifiable substrate of attention. TRENDS in Cognitive Sciences, 18, 300309. doi:10.1016/j.tics.2014.02.005Google Scholar
Caligiore, D., Pezzulo, G., Baldassarre, G., et al. (2017). Consensus paper: Towards a systems-level view of cerebellar function: The interplay between cerebellum, basal ganglia, and cortex. The Cerebellum, 16, 203229. doi:10.1007/s12311-016-0763-3Google Scholar
Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. TRENDS in Cognitive Sciences, 12, 187192. doi:10.1016/j.tics.2008.02.010Google Scholar
Cameron-Faulkner, T., Lieven, E., & Tomasello, M. (2003). A construction based analysis of child directed speech. Cognitive Science, 27, 843873. doi:10.1207/s15516709cog2706_2CrossRefGoogle Scholar
Canolty, R. T., Edwards, E., Dalal, S. S., et al. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313, 16261628. doi:10.1126/science.1128115Google Scholar
Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. TRENDS in Cognitive Sciences, 14, 506515. doi:10.1016/j.tics.2010.09.001Google Scholar
Capute, A. J., Palmer, F. B., Shapiro, B. K., et al. (1986). Clinical linguistic and auditory milestone scale: Prediction of cognition in infancy. Developmental Medicine and Child Neurology, 28, 762771. doi:10.1111/j.1469-8749.1986.tb03930.xGoogle Scholar
Caramazza, A., & Hillis, A. E. (1991). Lexical organization of nouns and verbs in the brain. Nature, 349, 788. doi:10.1038/349788a0Google Scholar
Caramazza, A., Hillis, A. E., Rapp, B. C., et al. (1990). The multiple semantics hypothesis: Multiple confusions? Cognitive Neuropsychology, 7, 161189. doi:10.1080/02643299008253441Google Scholar
Carcagno, S., & Plack, C. J. (2017). Short-term learning and memory: Training and perceptual learning. In Kraus, N., Anderson, S. R., White-Schwoch, T., Fay, R. R., & Popper, R. N. (eds.), The frequency-following response: A window into human communication (pp. 75100). Cham, CH: Springer & ASA Press.Google Scholar
Cäsar, C., Zuberbühler, K., Young, R. J., et al. (2013). Titi monkey call sequences vary with predator location and type. Biology Letters, 9, 15. doi:10.1098/rsbl.2013.0535Google Scholar
Catford, J. C. (1977). Fundamental problems in phonetics. Edinburgh, UK: Edinburgh University Press.Google Scholar
Chabrol, F. P., Arenz, A., Wiechert, M. T., et al. (2015). Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nature Neuroscience, 18, 718. doi:10.1038/nn.3974Google Scholar
Chafe, W. (1979). The flow of thought and the flow of language. In Givón, T. (ed.), Discourse and syntax. Syntax and semantics 12 (pp. 159181). New York, NY: Academic Press.Google Scholar
Chan, A., McAllister, L., & Wilson, L. (1998). An investigation of the MLU–age relationship and predictors of MLU in 2- and 3-year-old Australian children. Asia Pacific Journal of Speech, Language and Hearing, 3, 97108. doi:10.1179/136132898805577241Google Scholar
Chan, M. E., & Elliott, J. M. (2011). Cross‐linguistic differences in digit memory span. Australian Psychologist, 46, 2530. doi:10.1111/j.1742-9544.2010.00007.xGoogle Scholar
Chandrasekaran, B., & Kraus, N. (2010). The scalp‐recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47, 236246. doi:10.1111/j.1469-8986.2009.00928.xGoogle Scholar
Charness, N., Park, D. C., & Sabel, B. A. (2001). Communication, technology and aging: Opportunities and challenges for the future. New York, NY: Springer.Google Scholar
Chen, S. H. A., & Desmond, J. E. (2005). Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage, 24, 332338. doi:10.1016/j.neuroimage.2004.08.032Google Scholar
Chenery, H. J., Angwin, A. J., & Copland, D. A. (2008). The basal ganglia circuits, dopamine, and ambiguous word processing: A neurobiological account of priming studies in Parkinson’s disease. Journal of the International Neuropsychological Society, 14, 351364. doi:10.1017/S1355617708080491Google Scholar
Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world. Chicago, IL: University of Chicago Press.Google Scholar
Cholin, J. (2008). The mental syllabary in speech production: An integration of different approaches and domains. Aphasiology, 22, 11271141. doi:10.1080/02687030701820352Google Scholar
Cholin, J., Levelt, W. J. M., & Schiller, N. O. (2006). Effects of syllable frequency in speech production. Cognition, 99, 205235. doi:10.1016/j.cognition.2005.01.009Google Scholar
Chomsky, N. (1957). Syntactic structures. The Hague, NL: Mouton.Google Scholar
Chomsky, N. (1959). A review of B. F. Skinner’s Verbal Behavior. Language, Speech and Hearing Services in School, 35, 2658.Google Scholar
Chomsky, N. (1961). On the notion ‘rule of grammar’. In Jakobson, R. (ed.), Proceedings of the Symposia in Applied Mathematics XII: Structure of language and its mathematical aspects (pp. 624). Providence, RI: American Mathematical Society.Google Scholar
Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.Google Scholar
Chomsky, N. (1967). The formal nature of language. Lenneberg, Appendix to E. H., Biological foundations of language (pp. 397442). New York, NY: John Wiley & Sons.Google Scholar
Chomsky, N. (1972). Language and mind. New York, NY: Harcourt, Brace, Jovanovich.Google Scholar
Chomsky, N. (1975a). The logical structure of linguistic theory. New York, NY: Plenum.Google Scholar
Chomsky, N. (1975b). Reflections on language. New York, NY: Pantheon Books.Google Scholar
Chomsky, N. (1980a). On cognitive structures and their development: A reply to Piaget. In Piattelli-Palmarini, M. (ed.), Language and learning: The debate between Jean Piaget and Noam Chomsky (pp. 3554). Cambridge, MA: Harvard University Press.Google Scholar
Chomsky, N. (1980b). Rules and representations. New York, NY: Columbia University Press.CrossRefGoogle Scholar
Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York, NY: Praeger.Google Scholar
Chomsky, N. (1993). Lectures on government and binding: The Pisa lectures. Berlin, DE: Mouton de Gruyter.Google Scholar
Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.Google Scholar
Chomsky, N. (2000). New horizons in the study of language and mind. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Chomsky, N. (2002). On nature and language. Cambridge, UK: Cambridge University Press.Google Scholar
Chomsky, N. (2006). Language and mind (3rd ed.). Cambridge, UK: Cambridge University Press.Google Scholar
Chomsky, N. (2012). The science of language: Interviews with James McGilvray. Cambridge, UK: Cambridge University Press.Google Scholar
Chomsky, N., & Halle, M. (1968). The sound pattern of English. New York, NY: Harper and Row.Google Scholar
Christiansen, M. H., & Chater, N. (2008). Language as shaped by the brain. Behavioral and Brain Sciences, 31, 489509. doi:10.1017/S0140525X08004998Google Scholar
Christiansen, M. H., & Kirby, S. (2003). Language evolution: Consensus and controversies. TRENDS in Cognitive Sciences, 7, 300307. doi:10.1016/s1364-6613(03)00136-0Google Scholar
Christophe, A., & Mehler, J. (2001). Perception of prosodic boundary correlates by newborn infants. Infancy, 2, 385394. doi:10.1207/S15327078IN0203_6Google Scholar
Christophe, A., Millotte, S., Bernal, S., et al. (2008). Bootstrapping lexical and syntactic acquisition. Language and Speech, 51, 6175. doi:10.1177/00238309080510010501Google Scholar
Christophe, A., Peperkamp, S., Pallier, C., et al. (2004). Phonological phrase boundaries constrain lexical access I. Adult data. Journal of Memory and Language, 51, 523547. doi:10.1016/j.jml.2004.07.001Google Scholar
Clark, B. (2012). Syntactic theory and the evolution of syntax. Biolinguistics, 7, 169197.Google Scholar
Clements, G. N., & Keyser, S. J. (1983). CV phonology: A generative theory of the syllable. Linguistic Inquiry Monographs, 9, 1191.Google Scholar
Cogan, G. B., & Poeppel, D. (2011). A mutual information analysis of neural coding of speech by low-frequency MEG phase information. Journal of Neurophysiology, 106, 554563. doi:10.1152/jn.00075.2011Google Scholar
Conant, S. (1987). The relationship between age and MLU in young children: A second look at Klee and Fitzgerald’s data. Journal of Child Language, 14, 169173. doi:10.1017/S0305000900012794Google Scholar
Cook, M., Murdoch, B. E., Cahill, L., et al. (2004). Higher‐level language deficits resulting from left primary cerebellar lesions. Aphasiology, 18, 771784. doi:10.1080/02687030444000291Google Scholar
Cools, R., Barker, R. A., Sahakian, B. J., et al. (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cerebral Cortex, 11, 11361143. doi:10.1093/cercor/11.12.1136Google Scholar
Corballis, M. C. (1992). On the evolution of language and generativity. Cognition, 44, 197–126. doi:10.1016/0010-0277(92)90001-XGoogle Scholar
Corballis, M. C. (2002). From hand to mouth: The origins of language. Princeton NJ: Princeton University Press.Google Scholar
Corballis, M. C. (2003). From mouth to hand: gesture, speech, and the evolution of right-handedness. Behavioral and Brain Sciences, 26, 199208. doi:10.1017/S0140525X03000062Google Scholar
Corballis, M. C. (2009). The evolution of language. Annals of the New York Academy of Sciences, 1156, 1943. doi:10.1111/j.1749-6632.2009.04423.xGoogle Scholar
Corballis, M. C. (2010). Mirror neurons and the evolution of language. Brain and Language, 112, 2535. doi:10.1016/j.bandl.2009.02.002Google Scholar
Coulmas, F. (1989). The writing systems of the world. Oxford, UK: Blackwell.Google Scholar
Coulmas, F. (1996). The Blackwell encyclopedia of writing systems. Oxford, UK: Wiley-Blackwell.Google Scholar
Coulmas, F. (2003). Writing systems: An introduction to their linguistic analysis. Cambridge, UK: Cambridge University Press.Google Scholar
Cousins, K. A. Q., & Grossman, M. (2017). Evidence of semantic processing impairments in behavioural variant frontotemporal dementia and Parkinson’s disease. Current opinion in neurology, 30, 617622. doi:10.1097/WCO.0000000000000498Google Scholar
Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87185. doi:10.1017/S0140525X01003922Google Scholar
Cowan, N. (2005). Working memory capacity. New York, NY: Psychology Press.Google Scholar
Cowie, F. (1999). What’s within? Nativism reconsidered. Oxford, UK: Oxford University Press.Google Scholar
Crago, M. B. (1990). Cultural context in communicative interaction of Inuit children (PhD). McGill University, Montreal, QC.Google Scholar
Crago, M. B., & Allen, S. (1997). Linguistic and cultural aspects of simplicity and complexity in Inuktitut child directed speech. In Hughes, E., Hughes, M., & Greenhil, A. (eds.), Proceedings of the 21st Annual Boston University Conference on Language Development (pp. 91102). Somerville, MA: Cascadilla Press.Google Scholar
Crain, S., & Pietroski, P. M. (2001). Nature, nurture and universal grammar. Linguistics and Philosophy, 24, 139186. doi:10.1023/A:1005694100138Google Scholar
Crelin, E. S. (1987). The human vocal tract: Anatomy, function, development and evolution. New York, NY: Vantage Press.Google Scholar
Crepaldi, D., Berlingeri, M., Cattinelli, I., et al. (2013). Clustering the lexicon in the brain: A meta-analysis of the neurofunctional evidence on noun and verb processing. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00303Google Scholar
Crepaldi, D., Berlingeri, M., Paulesu, E., et al. (2011). A place for nouns and a place for verbs? A critical review of neurocognitive data on grammatical-class effects. Brain and Language, 116, 3349. doi:10.1016/j.bandl.2010.09.005Google Scholar
Crockford, C., & Boesch, C. (2003). Context-specific calls in wild chimpanzees, Pan troglodytes verus: Analysis of barks. Animal Behaviour, 66, 115125. doi:10.1006/anbe.2003.2166Google Scholar
Crompton, A. (1981). Syllables and segments in speech production. Linguistics, 19, 663716.Google Scholar
Crosson, B. (1992). Subcortical functions in language and memory. New York, NY: Guilford.Google Scholar
Crosson, B. (2013). Thalamic mechanisms in language: A reconsideration based on recent findings and concepts. Brain and Language, 126, 7388. doi:10.1016/j.bandl.2012.06.011Google Scholar
Crosson, B., Bejamin, M., & Levy, I. (2007). Role of the basal ganglia in language and semantics: Supporting cast. In Hart, J. & Kraut, M. A. (eds.), Neural basis of semantic memory. (pp. 219243). New York, NY: Cambridge University Press.Google Scholar
Crosson, B., & Haaland, K. Y. (2003). Subcortical functions in cognition: Toward a consensus. Journal of the International Neuropsychological Society, 9, 10271030. doi:10.1017/S1355617703970068Google Scholar
Crystal, D. (1974). Review of the book A First Language: The Early Stages. Journal of Child Language, 1, 289307.Google Scholar
Cummins, F. (2012). Oscillators and syllables: A cautionary note. Frontiers in Psychology, 3. doi:10.3389/fpsyg.2012.00364Google Scholar
Curtiss, S., & de Bode, S. (2003). How normal is grammatical development in the right hemisphere following hemispherectomy? The root infinitive stage and beyond. Brain and Language, 86, 193206. doi:10.1016/S0093-934X(02)00528-XGoogle Scholar
Cutler, A. (1980). La leçon des lapsus. La Recherche, 11, 686692.Google Scholar
Cutler, A. (2012). Native listening: Language experience and the recognition of spoken words. Cambridge, MA: MIT Press.Google Scholar
D’Angelo, E. (2018). Physiology of the cerebellum. In Manto, M. & Huisman, T. A. G. M. (eds.), Handbook of clinical neurology (Vol. 154, pp. 85108). Amsterdam, NL: Elsevier.Google Scholar
D’Ausilio, A., Maffongelli, L., Bartoli, E., et al. (2014). Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-Doppler ultrasound imaging. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 110. doi:10.1098/rstb.2013.0418Google Scholar
Dabrowska, E. (2004). Language, mind and brain: Some psychological and neurological constraints on theories of grammar. Edinburgh, UK: Edinburgh University Press.Google Scholar
Dalla Volta, R., Gianelli, C., Campione, G. C., et al. (2009). Action word understanding and overt motor behavior. Experimental Brain Research, 196, 403412. doi:10.1007/s00221-009-1864-8Google Scholar
Daniels, P. T. (2017). Writing systems. In Aronoff, M. (ed.), The handbook of linguistics (2nd ed., pp. 7594). Malden, MA: John Wiley.Google Scholar
Daniels, P. T., & Bright, W. (eds.). (1996). The world’s writing systems. New York, NY: Oxford University Press.Google Scholar
Daniels, P. T., & Share, D. L. (2018). Writing system variation and its consequences for reading and dyslexia. Scientific Studies of Reading, 22, 101116. doi:10.1080/10888438.2017.1379082Google Scholar
Daniloff, R., & Moll, K. L. (1968). Coarticulation of lip rounding. Journal of Speech, Language, and Hearing Research, 11, 707721. doi:10.1044/jshr.1104.707Google Scholar
Deacon, T. W. (1997). The symbolic species. New York, NY: W.W. Norton.Google Scholar
Deacon, T. W. (2011). Incomplete nature: How mind emerged from matter. New York, NY: W.W. Norton.Google Scholar
Deacon, T. W. (2012). Beyond the symbolic species. In Schilhab, T., Stjernfelt, F., & Deacon, T. W. (eds.), The symbolic species evolved (pp. 938). Dordrecht, NL: Springer.Google Scholar
Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain Research, 1079, 414. doi:10.1016/j.brainres.2005.12.115Google Scholar
DeHaene, S. (2009). Reading in the brain. NewYork, NY: Penguin.Google Scholar
Delattre, P. (1966). A comparison of syllable length conditioning among languages. International Review of Applied Linguistics, 4, 183198.Google Scholar
Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93, 283321. doi:10.1037/0033-295X.93.3.283Google Scholar
Della Rosa, P. A., Catricalà, E., Vigliocco, G., et al. (2010). Beyond the abstract–concrete dichotomy: Mode of acquisition, concreteness, imageability, familiarity, age of acquisition, context availability, and abstractness norms for a set of 417 Italian words. Behavior Research Methods, 42, 10421048. doi:10.3758/brm.42.4.1042Google Scholar
DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. JAMA Neurology, 64, 2024. doi:10.1001/archneur.64.1.20Google Scholar
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 921. doi:10.1016/j.jneumeth.2003.10.009Google Scholar
de Meo, R., Murray, M. M., Clarke, S., et al. (2015). Top-down control and early multisensory processes: chicken vs. egg. Frontiers in Integrative Neuroscience, 9. doi:10.3389/fnint.2015.00017Google Scholar
Depue, B. E. (2012). A neuroanatomical model of prefrontal inhibitory modulation of memory retrieval. Neuroscience & Biobehavioral Reviews, 36, 13821399. doi:doi.org/10.1016/j.neubiorev.2012.02.012Google Scholar
Derwing, B. L. (1980). Against autonomous linguistics. In Perry, T. (ed.), Evidence and argumentation in linguistics (pp. 163189). Berlin, DE: de Gruyter.Google Scholar
Derwing, B. L. (1992). Orthographic aspects of linguistic competence. In Downing, P., Lima, S. D., & Noonan, M. (eds.), The linguistics of literacy (pp. 193210). Philadelphia, PA: John Benjamins.Google Scholar
de Santos Loureiro, C., Braga, L. W., do Nascimento Souza, L., et al. (2004). Degree of illiteracy and phonological and metaphonological skills in unschooled adults. Brain and Language, 89, 499502. doi:1016/j.bandl.2003.12.008Google Scholar
Desmond, K. J., Allen, P. D., Demizio, D. L., et al. (1997). Redefining end of test (EOT) criteria for pulmonary function testing in children. American Journal of Respiratory and Critical Care Medecine, 156, 542545. doi:10.1164/ajrccm.156.2.9610116Google Scholar
DeThorne, L. S., Johnson, B. W., & Loeb, J. W. (2005). A closer look at MLU: What does it really measure? Clinical Linguistics & Phonetics, 19, 635648. doi:10.1080/02699200410001716165Google Scholar
Devan, B. D., & White, N. M. (1999). Parallel information processing in the dorsal striatum: Relation to hippocampal function. The Journal of Neuroscience, 19, 27892798. doi:10.1523/jneurosci.19-07-02789.1999Google Scholar
Di Sciullo, A.-M., & Williams, E. (1987). On the definition of word. Cambridge, MA: MIT Press.Google Scholar
Dickman, H., Fletke, K., & Redfern, R. E. (2016). Prolonged unassisted survival in an infant with anencephaly. BMJ Case Reports, 2016, bcr2016215986. doi:10.1136/bcr-2016-215986Google Scholar
Diehl, R. L., Lotto, A. J., & Holt, L. L. (2004). Speech perception. Annual Review of Psychology, 55, 149179. doi:10.1146/annurev.psych.55.090902.142028Google Scholar
Ding, N., Melloni, L., Zhang, H., et al. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19, 158164. doi:10.1038/nn.4186Google Scholar
Ding, N., & Simon, J. Z. (2014). Cortical entrainment to continuous speech: functional roles and interpretations. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00311Google Scholar
Dixon, R. M. W., & Aikhenvald, A. Y. (2002). Word: A cross-linguistic typology. Cambridge, UK: Cambridge University Press.Google Scholar
Doelling, K. B., Arnal, L. H., Ghitza, O., et al. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage, 85 Pt 2, 761768. doi:10.1016/j.neuroimage.2013.06.035Google Scholar
Donald, M. (1997). Preconditions for the evolution of protolanguages. In Corballis, M. C. & Lea, S. E. G. (eds.), The descent of mind: Psychological perspectives on hominid evolution (pp. 138154). Oxford, UK: Oxford University Press.Google Scholar
Donegan, P. J. (2015). The emergence of phonological representation. In MacWhinney, B. & O’Grady, W. (eds.), The handbook of language emergence (pp. 3352). Chichester, UK: John Wiley.Google Scholar
Dove, G. (2015). How to go beyond the body: An introduction. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00660Google Scholar
Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10, 732739. doi:10.1016/S0959-4388(00)00153-7Google Scholar
Dragoi, G., & Tonegawa, S. (2013). Distinct preplay of multiple novel spatial experiences in the rat. Proceedings of the National Academy of Sciences, 110, 91009105. doi:10.1073/pnas.1306031110Google Scholar
Draper, M. H., Ladefoged, P., & Whitteridge, D. (1959). Respiratory muscles in speech. Journal of Speech & Hearing Research, 2, 1627. doi:10.1044/jshr.0201.16Google Scholar
Du, Y., Huang, Q., Wu, X., et al. (2009). Binaural unmasking of frequency-following responses in rat amygdala. Journal of Neurophysiology, 101, 16471659. doi:10.1152/jn.91055.2008Google Scholar
Du, Y., Kong, L., Wang, Q., et al. (2011). Auditory frequency-following response: A neurophysiological measure for studying the “cocktail-party problem.” Neuroscience & Biobehavioral Reviews, 35, 20462057. doi:10.1016/j.neubiorev.2011.05.008Google Scholar
Du, Y., Ma, T., Wang, Q., et al. (2009). Two crossed axonal projections contribute to binaural unmasking of frequency‐following responses in rat inferior colliculus. European Journal of Neuroscience, 30, 17791789. doi:10.1111/j.1460-9568.2009.06947.xGoogle Scholar
Dubois, J., Dehaene-Lambertz, G., Perrin, M., et al. (2008). Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging. Human Brain Mapping, 29, 1427. doi:10.1002/hbm.20363Google Scholar
Dudai, Y. (1989). The neurobiology of memory: Concepts, findings, trends. New York, NY: Oxford University Press.Google Scholar
Duff, M. C., & Brown-Schmidt, S. (2012). The hippocampus and the flexible use and processing of language. Frontiers in Human Neuroscience, 6. doi:10.3389/fnhum.2012.00069Google Scholar
Duff, M. C., & Brown-Schmidt, S. (2017). Hippocampal contributions to language use and processing. In Hannula, D. E. & Duff, M. C. (eds.), The Hippocampus from cells to systems: Structure, connectivity, and functional contributions to memory and flexible cognition (pp. 503536). Cham, CH: Springer.Google Scholar
Duranti, A. I., & Goodwin, C. (eds.). (1992). Rethinking context: Language as an interactive phenomenon. Cambridge, UK: Cambridge University Press.Google Scholar
Ebner, T. J., & Pasalar, S. (2008). Cerebellum predicts the future motor state. Cerebellum, 7, 583588. doi:10.1007/s12311-008-0059-3Google Scholar
Ehri, L. C. (1975). Word consciousness in readers and prereaders. Journal of Educational Psychology, 67, 204212. doi:10.1037/h0076942Google Scholar
Ehri, L. C. (1998). Grapheme-phoneme knowledge is essential for learning to read words in English. In Metsala, J. L. & Ehri, L. C. (eds.), Word recognition in beginning literacy (pp. 340). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Ehri, L. C. (2014). Orthographic mapping in the acquisition of sight word reading, spelling memory, and vocabulary learning. Scientific Studies of Reading, 18, 521. doi:10.1080/10888438.2013.819356Google Scholar
Ehri, L. C., & Wilce, L. (1980). The influence of orthography on readers’ conceptualization of the phonemic structure of words. Applied Psycholinguistics, 1, 371385. doi:10.1017/S0142716400009802Google Scholar
Ehri, L. C., Wilce, L. S., & Taylor, B. B. (1987). Children’s categorization of short vowels in words and the influence of spellings. Merrill-Palmer Quarterly, 33, 393421.Google Scholar
Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117, 17851796. doi:10.1152/jn.00005.2017Google Scholar
Eichenbaum, H., Amaral, D. G., Buffalo, E. A., et al. (2016). Hippocampus at 25. Hippocampus, 26, 12381249. doi:10.1002/hipo.22616Google Scholar
Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. New York, NY: Oxford University Press.Google Scholar
Ekmekci, F. O. (1982). Language development of a Turkish child: A speech analysis in terms of length and complexity. Journal of Human Sciences, 1, 103112.Google Scholar
Ekstrom, A. D., & Ranganath, C. (2018). Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 28, 680687. doi:10.1002/hipo.22750Google Scholar
Ekstrom, A. D., Spiers, H. J., Bohbot, V. D., et al. (2018). Human spatial navigation. Princeton, NJ: Princeton University Press.Google Scholar
Elbeheri, G., Everatt, J., Reid, G., et al. (2006). Dyslexia assessment in Arabic. Journal of Research in Special Educational Needs, 6, 143152. doi:10.1111/j.1471-3802.2006.00072.xGoogle Scholar
Ellis, A. W. (1980). Errors in speech and short-term memory: The effects of phonemic similarity and syllable position. Journal of Verbal Learning and Verbal Behavior, 19, 624634. doi:10.1016/S0022-5371(80)90672-6Google Scholar
Ellis, N. C. (2002). Frequency effects in language processing: A review with implications for theories of implicit and explicit language acquisition. Studies in Second Language Acquisition, 24, 143188. doi:10.1017/S0272263102002024Google Scholar
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179211. doi:10.1207/s15516709cog1402_1Google Scholar
Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48, 7199. doi:10.1016/0010-0277(93)90058-4Google Scholar
Elman, J. L., Bates, E. A., Johnson, M. H., et al. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT Press.Google Scholar
Embick, D., & Poeppel, D. (2015). Towards a computational(ist) neurobiology of language: Correlational, integrated and explanatory neurolinguistics. Language, Cognition and Neuroscience, 30, 357366. doi:10.1080/23273798.2014.980750Google Scholar
Emmorey, K. (2005). Sign languages are problematic for a gestural origins theory of language evolution. Behavioral and Brain Sciences, 28, 130131. doi:10.1017/S0140525X05270036Google Scholar
Endress, A. D., & Hauser, M. D. (2010). Word segmentation with universal prosodic cues. Cognitive Psychology, 61, 177199. doi:10.1016/j.cogpsych.2010.05.001Google Scholar
Endress, A. D., & Mehler, J. (2009). The surprising power of statistical learning: When fragment knowledge leads to false memories of unheard words. Journal of Memory and Language, 60, 351367. doi:10.1016/j.jml.2008.10.003Google Scholar
Erickson, L. C., & Thiessen, E. D. (2015). Statistical learning of language: Theory, validity, and predictions of a statistical learning account of language acquisition. Developmental Review, 37, 66108. doi:10.1016/j.dr.2015.05.002Google Scholar
Eschenko, O., & Mizumori, S. J. Y. (2007). Memory influences on hippocampal and striatal neural codes: Effects of a shift between task rules. Neurobiology of Learning and Memory, 87, 495509. doi:10.1016/j.nlm.2006.09.008Google Scholar
Esteve-Gibert, N., & Prieto, P. (2018). Early development of the prosody–meaning interface. In Prieto, P. & Esteve-Gibert, N. (eds.), The development of prosody in first language acquisition (pp. 227246). Amsterdam, NL: John Benjamins.Google Scholar
Etkin, A., Egner, T., Peraza, D. M., et al. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871882. doi:10.1016/j.neuron.2006.07.029Google Scholar
Evans, N., & Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32, 429448. doi:10.1017/S0140525X0999094XGoogle Scholar
Everatt, J., Smythe, I., Ocampo, D., et al. (2004). Issues in the assessment of literacy‐related difficulties across language backgrounds: A cross‐linguistic comparison. Journal of Research in Reading, 27, 141151. doi:10.1111/j.1467-9817.2004.00222.xGoogle Scholar
Ezeizabarrena, M.-J., & Garcia Fernandez, I. (2018). Length of utterance, in morphemes or in words? MLU3-w, a reliable measure of language development in early Basque. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.02265Google Scholar
Faber, A. (1990). Phonemic segmentation as epiphenomenon: Evidence from the history of alphabetic writing. Haskins Laboratories Report on Speech Research, SR-101/102, 113.Google Scholar
Fadiga, L., Craighero, L., Buccino, G., et al. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15, 399402. doi:10.1046/j.0953-816x.2001.01874.xGoogle Scholar
Fagan, M. K. (2009). Mean length of utterance before words and grammar: Longitudinal trends and developmental implications of infant vocalizations. Journal of Child Language, 36, 495527. doi:10.1017/s0305000908009070Google Scholar
Fang, P. C., Stepniewska, I., & Kaas, J. H. (2006). The thalamic connections of motor, premotor, and prefrontal areas of cortex in a prosimian primate (Otolemur garnetti). Neuroscience, 143, 9871020. doi:10.1016/j.neuroscience.2006.08.053Google Scholar
Fant, G. (1960). Acoustic theory of speech production. The Hague, NL: Mouton.Google Scholar
Feldman, A. G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture-II. Controllable parameters of the muscles. Biophysics, 11, 565578.Google Scholar
Feldman, A. G. (1986). Once more on the equilibrium-point hypothesis for motor control. Journal of Motor Behavior, 18, 1754. doi:10.1080/00222895.1986.10735369Google Scholar
Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12, 105118. doi:10.1038/nrn2979Google Scholar
Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience, 17, 212226. doi:10.1162/0898929053124910Google Scholar
Ferreira, F. (2005). Psycholinguistics, formal grammars, and cognitive science. The Linguistic Review, 22, 365. doi:10.1515/tlir.2005.22.2-4.365Google Scholar
Ferry, A. L., Hespos, S. J., & Waxman, S. R. (2010). Categorization in 3‐ and 4‐month‐old infants: An advantage of words over tones. Child Development, 81, 472479. doi:10.1111/j.1467-8624.2009.01408.xGoogle Scholar
Finestack, L. H., Payesteh, B., Disher, J., et al. (2014). Reporting child language sampling procedures. Journal of Speech, Language, and Hearing Research, 57, 22742279. doi:10.1044/2014_JSLHR-L-14-0093Google Scholar
Fischer-Jørgensen, E. (1975). Trends in phonological theory: A historical introduction. Copenhagen, DK: Akademisk Forlag.Google Scholar
Fisher, C., & Tokura, H. (1996). Prosody in speech to infants: Direct and indirect acoustic cues to syntactic structure. In Morgan, J. L. & Demuth, K. (eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition (pp. 343363). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Fitch, W. T. (2000). The evolution of speech: A comparative review. TRENDS in Cognitive Sciences, 4, 258267. doi:10.1016/S1364-6613(00)01494-7Google Scholar
Fitch, W. T. (2005). Production of vocalizations in mammals. In Brown, K. (ed.), Encyclopedia of language and linguistics (pp. 115121). New York, NY: Elsevier.Google Scholar
Fitch, W. T. (2010). The evolution of language. Cambridge, UK: Cambridge University Press.Google Scholar
Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The evolution of the language faculty: clarifications and implications. Cognition, 97, 179210. doi:10.1016/j.cognition.2005.02.005Google Scholar
Fitch, W. T., & Reby, D. (2001). The descended larynx is not uniquely human. Proceedings of the Royal Society of London B: Biological Sciences, 268, 16691675. doi:10.1098/rspb.2001.1704Google Scholar
Fletcher-Flinn, C. M., Thompson, G. B., Yamada, M., et al. (2011). The acquisition of phoneme awareness in children learning the hiragana syllabary. Reading and Writing, 24, 623633. doi:10.1007/s11145-010-9257-8Google Scholar
Fodor, J. A., Bever, T. G., & Garrett, M. F. (1974). The psychology of language: An introduction to psycholinguistics and generative grammar. New York, NY: McGraw-Hill.Google Scholar
Fortescue, M. (1984). Learning to speak Greenlandic: A case study of a two-year-old’s morphology in a polysynthetic language. First Language, 5, 101112. doi:10.1177/014272378400501402Google Scholar
Fowler, C. A. (1985). Current perspectives on language and speech production: A critical overview. In Daniloff, R. G. (ed.), Speech science: Recent advances (pp. 193278). San Diego, CA: College-Hill Press.Google Scholar
Fowler, C. A. (2010). The reality of phonological forms: A reply to Port. Language Sciences, 32, 5659. doi:10.1016/j.langsci.2009.10.015Google Scholar
Fowler, C. A., Shankweiler, D. P., & Studdert-Kennedy, M. (2016). “Perception of the speech code” revisited: Speech is alphabetic after all. Psychological Review, 123, 125150. doi:10.1037/rev0000013Google Scholar
Fox, B., & Routh, D. K. (1975). Analyzing spoken language into words, syllables, and phonomes: A developmental study. Journal of Psycholinguistic Research, 4, 331342.Google Scholar
Frank, M. C., Everett, D. L., Fedorenko, E., et al. (2008). Number as a cognitive technology: Evidence from Pirahã language. Cognition, 108, 819824. doi:10.1016/j.cognition.2008.04.007Google Scholar
Fries, C. C. (1952). The structure of English: An introduction to the construction of English sentences. New York, NY: Harcourt Brace.Google Scholar
Frisch, S. A., & Wright, R. (2002). The phonetics of phonological speech errors: An acoustic analysis of slips of the tongue. Journal of Phonetics, 30, 139162. doi:10.1006/jpho.2002.0176Google Scholar
Fromkin, V. A. (1966a). Neuro-muscular specification of linguistic units. Language and Speech, 9, 170199. doi:10.1177/002383096600900304Google Scholar
Fromkin, V. A. (1966b). Some requirements for a model of performance. UCLA Working Papers in Phonetics, 4, 1939.Google Scholar
Fromkin, V. A. (1970). Tips of the slung – or – to err is human. UCLA Working Papers in Phonetics, 14, 4079.Google Scholar
Fromkin, V. A. (1973). The non-anomalous nature of anomalous utterances. In Fromkin, V. A. (ed.), Speech errors as linguistic evidence (pp. 215269). The Hague, NL: Mouton.Google Scholar
Fromkin, V. A., Rodman, R., & Hyams, N. (2013). An introduction to language (10th ed.). Boston, MA: Wadsworth.Google Scholar
Fulkerson, A. L., & Waxman, S. R. (2007). Words (but not tones) facilitate object categorization: Evidence from 6- and 12-month-olds. Cognition, 105, 218228. doi:10.1016/j.cognition.2006.09.005Google Scholar
Galbraith, G. C., Arbagey, P. W., Branski, R., et al. (1995). Intelligible speech encoded in the human brain stem frequency-following response. NeuroReport, 6, 23632367. doi :10.1097/00001756-199511270-00021Google Scholar
Galbraith, G. C., Bhuta, S. M., Choate, A. K., et al. (1998). Brain stem frequency-following response to dichotic vowels during attention. NeuroReport, 9, 18891893. doi:10.1097/00001756-199806010-00041Google Scholar
Galbraith, G. C., Olfman, D. M., & Huffman, T. M. (2003). Selective attention affects human brain stem frequency-following response. NeuroReport, 14, 735738. doi:10.1097/00001756-200304150-00015Google Scholar
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455479. doi:10.1080/02643290442000310Google Scholar
Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? TRENDS in Cognitive Sciences, 15, 512519. doi:10.1016/j.tics.2011.09.003Google Scholar
Gambell, T., & Yang, C. (2005). Mechanisms and constraints in word segmentation. Manuscript, Yale University, 31.Google Scholar
Gardner, B. T., & Gardner, R. A. (1985). Signs of Intelligence in cross-fostered chimpanzees. Philosophical Transactions of the Royal Society B: Biological Sciences, 308, 159176. doi:10.1098/rstb.1985.0017Google Scholar
Gardner, H. (1985). The mind’s new science: A history of the cognitive revolution. New York, NY: Basic Books.Google Scholar
Gardner, R. A., & Gardner, B. T. (1969). Teaching sign language to a chimpanzee. Science, 165, 664672.Google Scholar
Gasser, M. (2004). The origins of arbitrariness in language. In Forbus, K. D., Gentner, D., & Regier, T. (eds.), Proceedings of the 26th annual meeting of the Cognitive Science Society (pp. 434439). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Gathercole, S. E., & Baddeley, A. D. (1989). Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. Journal of Memory and Language, 28, 200213. doi:10.1016/0749-596X(89)90044-2Google Scholar
Gelb, I. J. (1963). A study of writing. Chicago, IL: University of Chicago Press.Google Scholar
Gentilucci, M., & Corballis, M. C. (2006). From manual gesture to speech: A gradual transition. Neuroscience and Biobehavioral Reviews, 30, 949960. doi:10.1016/j.neubiorev.2006.02.004Google Scholar
Gerken, L. (1994). Young children’s representation of prosodic phonology: Evidence from English-speakers’ weak syllable productions. Journal of Memory and Language, 33, 1938. doi:10.1006/jmla.1994.1002Google Scholar
Gerken, L. (1996a). Prosodic structure in young children’s language production. Language, 72, 683712. doi:10.2307/416099Google Scholar
Gerken, L. (1996b). Prosody’s role in language acquisition and adult parsing. Journal of Psycholinguistic Research, 25, 345356. doi:10.1007/BF01708577Google Scholar
Gerken, L., Jusczyk, P. W., & Mandel, D. R. (1994). When prosody fails to cue syntactic structure: 9-month-olds’ sensitivity to phonological versus syntactic phrases. Cognition, 51, 237265. doi:10.1016/0010-0277(94)90055-8Google Scholar
Geschwind, N. (1970). The organization of language and the brain. Science, 170, 940944. doi:10.1126/science.170.3961.940Google Scholar
Geudens, A. (2006). Phonological awareness and learning to read a first language: Controversies and new perspectives. LOT Occasional Series, 6, 2543. doi:10.1.1.624.1580Google Scholar
Geudens, A., & Sandra, D. (2003). Beyond implicit phonological knowledge: No support for an onset–rime structure in children’s explicit phonological awareness. Journal of Memory and Language, 49, 157182. doi:10.1016/S0749-596X(03)00036-6Google Scholar
Ghitza, O. (2017). Acoustic-driven delta rhythms as prosodic markers. Language, Cognition and Neuroscience, 32, 545561. doi:10.1080/23273798.2016.1232419Google Scholar
Gil, D. (2002). Escaping eurocentrism: Fieldwork as a process of unlearning. In Newman, P. & Ratliff, M. (eds.), Linguistic fieldwork (pp. 102132). Cambridge, UK: Cambridge University Press.Google Scholar
Gilbert, A. C., & Boucher, V. J. (2007). What do listeners attend to in hearing prosodic structures? Investigating the human speech-parser using short-term recall. In 8th Annual conference of the International Speech Communication Association. InterSpeech-2007 (pp. 430433). Antwerp, BE: ISCA.Google Scholar
Gilbert, A. C., Boucher, V. J., & Jemel, B. (2014). Perceptual chunking and its effect on memory in speech processing: ERP and behavioral evidence. Frontiers in Psychology, 5. doi:10.3389/fpsyg.2014.00220Google Scholar
Gilbert, A. C., Boucher, V. J., & Jemel, B. (2015a). Individual differences in working memory and their effects on speech processing. In Proceedings of the 18th International Congress of Phonetic Sciences (Vol. Paper no 0772, pp. 14). Glasgow, UK: International Phonetic Association. doi:10.1016/0749-596X(86)90018-5Google Scholar
Gilbert, A. C., Boucher, V. J., & Jemel, B. (2015b). The perceptual chunking of speech: A demonstration using ERPs. Brain Research, 1603, 101113. doi:10.1016/j.brainres.2015.01.032Google Scholar
Gillon, G. T. (ed.) (2018). Phonological awareness: From research to practice (2nd ed.). New York, NY: Guilford.Google Scholar
Gilman, S., Carr, D., & Hollenberg, J. (1976). Kinematic effects of deafferentation and cerebellar ablation. Brain: A Journal of Neurology, 99, 311330. doi:10.1093/brain/99.2.311Google Scholar
Ginzburg, J., & Poesio, M. (2016). Grammar is a system that characterizes talk in interaction. Frontiers in Psychology, 7. doi:10.3389/fpsyg.2016.01938Google Scholar
Giraud, A.-L., Kleinschmidt, A., Poeppel, D., et al. (2007). Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron, 56, 11271134. doi:10.1016/j.neuron.2007.09.038Google Scholar
Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15, 511517. doi:10.1038/nn.3063Google Scholar
Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48, 905922. doi:10.1016/j.cortex.2011.04.010Google Scholar
Glickstein, M. (1994). Cerebellar agenesis. Brain, 117, 12091212. doi:10.1093/brain/117.5.1209Google Scholar
Gogate, L. J., Bahrick, L. E., & Watson, J. D. (2000). A study of multimodal motherese: The role of temporal synchrony between verbal labels and gestures. Child Development, 71, 878894. doi:10.1111/1467-8624.00197Google Scholar
Goldinger, S. D. (1996). Words and voices: Episodic traces in spoken word identification and recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 11661183. doi:10.1037/0278-7393.22.5.1166Google Scholar
Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105, 251279. doi:10.1037/0033-295X.105.2.251Google Scholar
Goldinger, S. D. (2007). A complementary-systems approach to abstract and episodic speech perception. In Proceedings of the 16th International Congress of Phonetic Sciences (pp. 4954). Saarbrücken, DE: ICPhS.Google Scholar
Goldinger, S. D., & Azuma, T. (2003). Puzzle-solving science: The quixotic quest for units in speech perception. Journal of Phonetics, 31, 305320. doi:10.1016/S0095-4470(03)00030-5Google Scholar
Goldinger, S. D., Papesh, M. H., Barnhart, A. S., et al. (2016). The poverty of embodied cognition. Psychonomic Bulletin & Review, 23, 959978. doi:10.3758/s13423-015-0860-1Google Scholar
Goldman-Rakic, P. S. (1994). The issue of memory in the study of prefrontal function. In Thierry, A. M., Glowinski, J., Goldman-Rakic, P. S., & Christen, Y. (eds.), Motor and cognitive functions of the prefrontal cortex. Research and perspectives in neurosciences (pp. 112121). Berlin, DE: Springer.Google Scholar
Goldstein, L., Nam, H., Saltzman, E., et al. (2009). Coupled oscillator planning model of speech timing and syllable structure. In Fant, G., Fujisaki, H., & S. J. (eds.), Frontiers in phonetics and speech science (pp. 239250). Beijing, CH: The Commercial Press.Google Scholar
Goldstein, L., & Pouplier, M. (2014). The temporal organization of speech. In Goldrick, M., Ferreira, V. S., & Miozzo, M. (eds.), The Oxford handbook of language production (pp. 210229). Oxfod, UK: Oxford University Press.Google Scholar
Goldstein, L., Pouplier, M., Chen, L., et al. (2007). Dynamic action units slip in speech production errors. Cognition, 103, 386412. doi:10.1016/j.cognition.2006.05.010Google Scholar
Golumbic, E. M. Z., Ding, N., Bickel, S., et al. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party.” Neuron, 77, 980991. doi:10.1016/j.neuron.2012.12.037Google Scholar
Goody, J. (1977). The domestication of the savage mind. Cambridge, UK: Cambridge University Press.Google Scholar
Goswami, U. (2002). In the beginning was the rhyme? A reflection on Hulme, Hatcher, Nation, Brown, Adams, and Stuart (2002). Journal of Experimental Child Psychology, 82, 4757. doi:10.1006/jecp.2002.2673Google Scholar
Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. TRENDS in Cognitive Sciences, 15, 310. doi:10.1016/j.tics.2010.10.001Google Scholar
Graybiel, A. M. (1997). The basal ganglia and cognitive pattern generators. Schizophrenia Bulletin, 23, 459469. doi:10.1093/schbul/23.3.459Google Scholar
Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119136. doi:10.1006/nlme.1998.3843Google Scholar
Graybiel, A. M. (2000). The basal ganglia. Current Biology, 10, R509-R511. doi:10.1016/S0960-9822(00)00593-5Google Scholar
Graybiel, A. M. (2008). Habits, rituals, and the evaluative brain. Annual Review of Neuroscience, 31, 359387. doi:10.1146/annurev.neuro.29.051605.112851Google Scholar
Graybiel, A. M., & Grafton, S. T. (2015). The striatum: Where skills and habits meet. Cold Spring Harbor perspectives in biology, 7, a021691. doi:10.1101/cshperspect.a021691Google Scholar
Griffin, A. L. (2015). Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Frontiers in systems neuroscience, 9. doi:10.3389/fnsys.2015.00029Google Scholar
Grimaldi, M. (2012). Toward a neural theory of language: Old issues and new perspectives. Journal of Neurolinguistics, 25, 304327. doi:10.1016/j.jneuroling.2011.12.002Google Scholar
Grimaldi, M. (2017). From brain noise to syntactic structures: A formal proposal within the oscillatory rhythms perspective. bioRxiv, 171702. doi:10.1101/171702Google Scholar
Gross, J., Hoogenboom, N., Thut, G., et al. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biology, 11, e1001752. doi:10.1371/journal.pbio.1001752Google Scholar
Guell, X., Hoche, F., & Schmahmann, J. D. (2015). Metalinguistic deficits in patients with cerebellar dysfunction: Empirical support for the dysmetria of thought theory. The Cerebellum, 14, 5058. doi:10.1007/s12311-014-0630-zGoogle Scholar
Guenther, F. H. (1994). A neural network model of speech acquisition and motor equivalent speech production. Biological Cybernetics, 72, 4353. doi:10.1007/bf00206237Google Scholar
Guenther, F. H. (1995). Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychological Review, 102, 594621. doi:10.1037/0033-295X.102.3.594Google Scholar
Guenther, F. H. (2016). Neural control of speech. Cambridge, MA: MIT Press.Google Scholar
Guenther, F. H., Ghosh, S. S., & Tourville, J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96, 280301. doi:10.1016/j.bandl.2005.06.001Google Scholar
Guenther, F. H., Hampson, M., & Johnson, D. (1998). A theoretical investigation of reference frames for the planning of speech movements. Psychological Review, 105, 611633. doi:10.1037/0033-295X.105.4.611-633Google Scholar
Guenther, F. H., & Vladusich, T. (2012). A neural theory of speech acquisition and production. Journal of Neurolinguistics, 25, 408422. doi:10.1016/j.jneuroling.2009.08.006Google Scholar
Guise, K. G., & Shapiro, M. L. (2017). Medial prefrontal cortex reduces memory interference by modifying hippocampal encoding. Neuron, 94, 183192.e188. doi:10.1016/j.neuron.2017.03.011Google Scholar
Gutman, A., Dautriche, I., Crabbé, B., et al. (2015). Bootstrapping the syntactic bootstrapper: Probabilistic labeling of prosodic phrases. Language Acquisition, 22, 285309. doi:10.1080/10489223.2014.971956Google Scholar
Hagoort, P., & van Berkum, J. (2007). Beyond the sentence given. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 801811. doi:10.1098/rstb.2007.2089Google Scholar
Halle, M., & Vergnaud, J.-R. (1980). Three dimensional phonology. Journal of Linguistic Research, 1, 83105.Google Scholar
Halliday, M. A. K. (1985). Spoken and written language. Oxford, UK: Oxford University Press.Google Scholar
Hanhong, L. I., & Fang, A. C. (2011). Word frequency of the CHILDES corpus: Another perspective of child language features. ICAME Journal, 35, 95116. doi:10.1.1.364.9909Google Scholar
Hannas, W. C. (2003). The writing on the wall: How asian orthography curbs creativity. Philadelphia, PA: University of Philadelphia Press.Google Scholar
Hardcastle, W. J., Gibbon, F. E., & Jones, W. (1991). Visual display of tongue-palate contact: Electropalatography in the assessment and remediation of speech disorders. International Journal of Language & Communication Disorders, 26, 4174. doi:10.3109/13682829109011992Google Scholar
Harris, R. (1980). The language-makers. Ithaca, NY: Cornell University Press.Google Scholar
Harris, R. (1986). The origin of writing. London, UK: Duckworth.Google Scholar
Harris, R. (1990). On redefining linguistics. In Davis, H. G. & Taylor, T. J. (eds.), Redefining linguistics (pp. 1852). London, UK: Routledge.Google Scholar
Harris, R. (1998). Introduction to integrational linguistics. Oxford, UK: Pergamon.Google Scholar
Harris, R. (2000). Rethinking writing. London, UK: Continuum.Google Scholar
Harris, R. (2002). The role of the language myth in the western cultural tradition. In Harris, R. (ed.), The Language Myth in Western Culture (pp. 124). Richmond, UK: Curzon Press.Google Scholar
Harris, Z. S. (1946). From morpheme to utterance. Language, 22, 161183.Google Scholar
Harris, Z. S. (1951). Methods in structural linguistics. Chicago IL: Chicago University Press.Google Scholar
Hashikawa, T. (1983). The inferior colliculopontine neurons of the cat in relation to other collicular descending neurons. Journal of Comparative Neurology, 219, 241249. doi:10.1002/cne.902190209Google Scholar
Haspelmath, M. (2011). The indeterminacy of word segmentation and the nature of morphology and syntax. Folia Linguistica, 45, 3180. doi:10.1515/flin.2011.002Google Scholar
Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm? – Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15, 936949. doi:10.1002/hipo.20116Google Scholar
Hauk, O. (2015). Representing mental representations – Neuroscientific and computational approaches to study language processing in the brain. Language, Cognition and Neuroscience, 30, 355356. doi:10.1080/23273798.2014.995680Google Scholar
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301307. doi:10.1016/S0896-6273(03)00838-9Google Scholar
Hauk, O., & Tschentscher, N. (2013). The body of evidence: What can neuroscience tell us about embodied semantics? Frontiers in Psychology. doi:10.3389/fpsyg.2013.00050Google Scholar
Hauser, M. D. (2016). Challenges to the what, when, and why? Biolinguistics, 10, 15.Google Scholar
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 15691579. doi:10.1126/science.298.5598.1569Google Scholar
Hauser, M. D., Newport, E. L., & Aslin, R. N. (2001). Segmentation of the speech stream in a non-human primate: Statistical learning in cotton-top tamarins. Cognition, 78, B53-B64. doi:10.1016/S0010-0277(00)00132-3Google Scholar
Hauser, M. D., Yang, C., Berwick, R. C., et al. (2014). The mystery of language evolution. Frontiers in Psychology, 5. doi:10.3389/fpsyg.2014.00401Google Scholar
Hayes, B. (1980). A metrical theory of stress rules. Phd dissertation MIT. Bloomington, IN: Indiana University Linguistics Club.Google Scholar
Hayes, B. (1984). The phonology of rhythm in English. Linguistic Inquiry, 15, 3374.Google Scholar
Hembrook, J. R., & Mair, R. G. (2011). Lesions of reuniens and rhomboid thalamic nuclei impair radial maze win-shift performance. Hippocampus, 21, 815826. doi:10.1002/hipo.20797Google Scholar
Henderson, A., Goldman-Eisler, F., & Skarbek, A. (1965). Temporal patterns of cognitive activity and breath control in speech. Language and Speech, 8, 236242. doi:10.1177/002383096500800405Google Scholar
Henry, M. J., Herrmann, B., & Obleser, J. (2014). Entrained neural oscillations in multiple frequency bands comodulate behavior. Proceedings of the National Academy of Sciences, 111, 1493514940. doi:10.1073/pnas.1408741111Google Scholar
Hepper, P. G., & Shahidullah, B. S. (1994). Development of fetal hearing. Archives of Disease in Childhood: Fetal and Neonatal Edition, 71, F81F87. doi:10.1136/fn.71.2.F81Google Scholar
Hewes, G. W. (1996). A history of the study of language origins and the gestural primacy hypothesis. In Lock, A. & Peters, C. (eds.), Handbook of human symbolic evolution (pp. 571595). Oxford, UK: Oxford University Press.Google Scholar
Heyes, C. M. (1993). Imitation, culture and cognition. Animal Behaviour, 46, 9991010. doi:10.1006/anbe.1993.1281Google Scholar
Hickey, T. (1991). Mean length of utterance and the acquisition of Irish. Journal of Child Language, 18, 553569. doi:10.1017/s0305000900011247Google Scholar
Hickok, G. (2014). The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition and Neuroscience, 29, 220. doi:10.1080/01690965.2013.834370Google Scholar
Hickok, G., Houde, J. F., & Rong, F. (2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69, 407422. doi:10.1016/j.neuron.2011.01.019Google Scholar
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393402. doi:10.1038/nrn2113Google Scholar
Hill, A. V. (1925). Length of muscle, and the heat and tension developed in an isometric contraction. Journal of Physiology, 60, 237263. doi:10.1113/jphysiol.1925.sp002242Google Scholar
Hillock-Dunn, A., Grantham, D. W., & Wallace, M. T. (2016). The temporal binding window for audiovisual speech: Children are like little adults. Neuropsychologia, 88, 7482. doi:10.1016/j.neuropsychologia.2016.02.017Google Scholar
Himelstein, L. (2011, July 5). Unlocking dyslexia in Japanese. Wall Street Journal. www.wsj.com/articles/SB10001424052702303763404576416273856397078Google Scholar
Hinterleitner, F. (2017). Speech synthesis. In Möller, S., Küpper, A., & Raake, A. (eds.), Quality of synthetic apeech: Perceptual dimensions, influencing factors, and instrumental assessment (pp. 518). Singapore, CN: Springer.Google Scholar
Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93, 411428. doi:10.1037/0033-295X.93.4.411Google Scholar
Hirano, M., Kurita, S., & Nakashima, T. (1983). Growth, development, and aging of human vocal folds. In Bless, D. M. & Abbs, J. H. (eds.), Vocal fold physiology: Contemporary research and clinical issues (pp. 2243). San Diego, CA: College-Hill Press.Google Scholar
Hirose, H., Sawashima, M., & Yoshioka, H. (1980). Laryngeal control for initiation of utterances: A simultaneous observation of glottal configuration and laryngeal EMG. Annual Bulletin Research Institute of Logopedics and Phoniatrics, 14, 113123.Google Scholar
Hirose, H., Sawashima, M., & Yoshioka, H. (1983). Laryngeal adjustment for initiation of utterances: A simultaneous EMG and fiberscopic study. In Bless, D. M. & Abbs, J. H. (eds.), Vocal fold physiology: Contemporary research and clinical issues (pp. 253263). San Diego CA: College-Hill Press.Google Scholar
Hixon, T. J., Goldman, M. D., & Mead, J. (1973). Kinematics of the chest wall during speech production: Volume displacements of the rib cage, abdomen, and lung. Journal of Speech and Hearing Research, 16, 78115. doi:10.1044/jshr.1601.78Google Scholar
Hobaiter, C. L., & Byrne, R. W. (2012). Gesture use in consortship: Wild chimpanzees’ use of gesture for an “evolutionarily urgent” purpose. In Pika, S. & Liebal, K. (eds.), Developments in primate gesture research (pp. 129146). Amsterdam, NL: John Benjamins.Google Scholar
Hockett, C. F. (1944). Review of Nida 1944. Language, 20, 252255.Google Scholar
Hockett, C. F. (1958). A Course in modern linguistics. New York, NY: Macmillan.Google Scholar
Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 88111.Google Scholar
Hoit, J. D., & Hixon, T. J. (1987). Age and speech breathing. Journal of Speech and Hearing Research, 30, 351366. doi:10.1044/jshr.3003.351Google Scholar
Hoit, J. D., Hixon, T. J., Watson, P. J., et al. (1990). Speech breathing in children and adolescents. Journal of Speech, Language, and Hearing Research, 33, 5169. doi:10.1044/jshr.3301.51Google Scholar
Hoosain, R. (1991). Psycholinguistic implications for linguistic relativity: A case study of Chinese. Hillsdale, NJ: Lawrence Earlbaum.Google Scholar
Hoosain, R. (1992). Psychological reality of the word in Chinese. In Hsuan-Chih, C. & Ovid, J. L. T. (eds.), Advances in Psychology (Vol. 90, pp. 111130). Oxford, UK: North-Holland.Google Scholar
Hopper, P. J. (1998). Emergent grammar. In Tomasello, M. (ed.), The new psychology of language: Cognitive and functional approaches (pp. 155175). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Houde, J., & Nagarajan, S. (2011). Speech production as state feedback control. Frontiers in Human Neuroscience, 5. doi:10.3389/fnhum.2011.00082Google Scholar
Houde, J. F., & Jordan, M. I. (1998). Sensorimotor adaptation in speech production. Science, 279, 12131216. doi:10.1126/science.279.5354.1213Google Scholar
Houk, J. C., Bastianen, C., Fansler, D., et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 15731583. doi:10.1098/rstb.2007.2063Google Scholar
Howard, M. F., & Poeppel, D. (2010). Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension. Journal of Neurophysiology, 104, 25002511. doi:10.1152/jn.00251.2010Google Scholar
Huettig, F., & Mani, N. (2016). Is prediction necessary to understand language? Probably not. Language, Cognition and Neuroscience, 31, 1931. doi:10.1080/23273798.2015.1072223Google Scholar
Huth, A. G., de Heer, W. A., Griffiths, T. L., et al. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532. doi:10.1038/nature17637Google Scholar
Huth, A. G., Nishimoto, S., Vu, A. T., et al. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76, 12101224. doi:10.1016/j.neuron.2012.10.014Google Scholar
Huysmans, E., de Jong, J., Festen, J. M., et al. (2017). Morphosyntactic correctness of written language production in adults with moderate to severe congenital hearing loss. Journal of Communication Disorders, 68, 3549. doi:10.1016/j.jcomdis.2017.06.005Google Scholar
Imai, M., & Kita, S. (2014). The sound symbolism bootstrapping hypothesis for language acquisition and language evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 113. doi:10.1098/rstb.2013.0298Google Scholar
Ingram, J. C. L. (2007). Neurolinguistics. An introduction to spoken language processing and its disorders. Cambridge, UK: Cambridge University Press.Google Scholar
Ishikawa, T., Shimuta, M., & Häusser, M. (2015). Multimodal sensory integration in single cerebellar granule cells in vivo. eLife, 4, e12916. doi:10.7554/eLife.12916Google Scholar
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304313. doi:10.1038/nrn2332Google Scholar
Ito, T., Tiede, M., & Ostry, D. J. (2009). Somatosensory function in speech perception. Proceedings of the National Academy of Sciences, 106, 12451248. doi:10.1073/pnas.0810063106Google Scholar
Iverson, J. M., Hall, A. J., Nickel, L., et al. (2007). The relationship between reduplicated babble onset and laterality biases in infant rhythmic arm movements. Brain and Language, 101, 198207. doi:10.1016/j.bandl.2006.11.004Google Scholar
Ivry, R. (1993). Cerebellar involvement in the explicit representation of temporal information. In Tallal, P., Galaburda, A. M., Llinás, R. R., & Von Euler, C. (eds.), Temporal information processing in the nervous system. Special reference to dyslexia and dysphasia (Vol. 682, pp. 214230). New York, NY: New York Academy of Sciences.Google Scholar
Ivry, R., & Diener, H. C. (1991). Impaired velocity perception in patients with lesions of the cerebellum. Journal of Cognitive Neuroscience, 3, 355366. doi:10.1162/jocn.1991.3.4.355%M23967816Google Scholar
Ivry, R. B., Spencer, R. M., Zelaznik, H. N., et al. (2002). The cerebellum and event timing. Annals of the New York Academy of Sciences, 978, 302317. doi:10.1111/j.1749-6632.2002.tb07576.xGoogle Scholar
Iwatsubo, T., Kuzuhara, S., Kanemitsu, A., et al. (1990). Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology, 40, 309–309. doi:10.1212/WNL.40.2.309Google Scholar
Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar, evolution. New York, NY: Oxford University Press.Google Scholar
Jackendoff, R. (2007a). Linguistics in cognitive science: The state of the art. The Linguistic Review, 24, 347401. doi:10.1515/TLR.2007.014Google Scholar
Jackendoff, R. (2007b). A parallel architecture perspective on language processing. Brain Research, 1146, 222. doi:10.1016/j.brainres.2006.08.111Google Scholar
Jackendoff, R. (2009). Language, consciousness, culture: Essays on mental structure. Cambridge, MA: MIT Press.Google Scholar
Jackendoff, R. (2017). In defense of theory. Cognitive Science, 41, 185212. doi:10.1111/cogs.12324Google Scholar
Jahanshahi, M., Obeso, I., Rothwell, J. C., et al. (2015). A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nature Reviews Neuroscience, 16, 719732. doi:10.1038/nrn4038Google Scholar
Jalilevand, N., & Ebrahimipour, M. (2014). Three measures often used in language samples analysis. Journal of Child Language Acquisition and Development, 2, 112.Google Scholar
Jeng, F.-C. (2017). Infant and childhood development: Intersections between development and language experience. In Kraus, N., Anderson, S. R., White-Schwoch, T., Fay, R. R., & Popper, R. N. (eds.), The frequency-following response: A window into human communication (pp. 1743). Cham, CH: Springer & ASA Press.Google Scholar
Jeng, F.-C., Chung, H.-K., Lin, C.-D., et al. (2011). Exponential modeling of human frequency-following responses to voice pitch. International journal of audiology, 50, 582593. doi:10.3109/14992027.2011.582164Google Scholar
Jensen, O., Kaiser, J., & Lachaux, J.-P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317324. doi:10.1016/j.tins.2007.05.001Google Scholar
Jensen, O., & Lisman, J. E. (1996). Novel lists of 7 +/– 2 known items can be reliably stored in an oscillatory short-term memory network: Interaction with long-term memory. Learning and Memory, 3, 257263. doi:10.1101/lm.3.2-3.257Google Scholar
Jensen, O., & Lisman, J. E. (1998). An oscillatory short-term memory buffer model can account for data on the Sternberg task. The Journal of Neuroscience, 18, 1068810699. doi:10.1523/JNEUROSCI.18-24-10688.1998Google Scholar
Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15, 13951399. doi:10.1046/j.1460-9568.2002.01975.xGoogle Scholar
Jin, X., Tecuapetla, F., & Costa, R. M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nature Neuroscience, 17. doi:10.1038/nn.3632Google Scholar
Johansson, B. B. (2006). Cultural and linguistic influence on brain organization for language and possible consequences for dyslexia: A review. Annals of Dyslexia, 56, 1350. doi:10.1007/s11881-006-0002-6Google Scholar
Johnson, E. K., & Jusczyk, P. W. (2001). Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of Memory and Language, 44, 548567. doi:10.1006/jmla.2000.2755Google Scholar
Jones, D. (1929). Definition of a phoneme. Le Maître Phonétique, 3, 4344.Google Scholar
Jones, E. G. (2001). The thalamic matrix and thalamocortical synchrony. Trends in Neurosciences, 24, 595601. doi:10.1016/S0166-2236(00)01922-6Google Scholar
Jones, E. G. (2007). The thalamus. Cambridge, UK: Cambridge University Press.Google Scholar
Jürgens, U. (1976). Projections from the cortical larynx area in the squirrel monkey. Experimental Brain Research, 25, 401411. doi:10.1007/bf00241730Google Scholar
Jürgens, U. (1992). On the neurobiology of vocal communication. In Papousek, H., Jürgens, U., & Papousek, M. (eds.), Nonverbal vocal communication: Comparative and developmental approaches (pp. 3142). Cambridge, UK: Cambridge University Press.Google Scholar
Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience and Biobehavioral Reviews, 26, 235258. doi:10.1016/S0149-7634(01)00068-9Google Scholar
Jusczyk, P. W. (1986). Toward a model of the development of speech perception. In Perkell, J. S. & Klatt, D. H. (eds.), Invariance and variability in speech process (pp. 135). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Jusczyk, P. W. (1993). How word recognition may evolve from infant speech perception capacities. In Altmann, G. & Shillcock, R. (eds.), Cognitive models of speech processing (pp. 2755). Hove, UK: Lawrence Erlbaum.Google Scholar
Jusczyk, P. W. (1996). Developmental speech perception. In Lass, N. J. (ed.), Principles of experimental phonetics (pp. 328357). St. Louis, MO: Mosby.Google Scholar
Jusczyk, P. W. (2001). Bootstrapping from the signal: Some further directions. In Weissenborn, J. & Höhle, B. (eds.), Approaches to bootstrapping: Phonological, lexical, syntactic and neurophysiological aspects of early language acquisition (Vol. 1, pp. 323). Philadelphia, PA: John Benjamins.Google Scholar
Jusczyk, P. W., & Aslin, R. N. (1995). Infants′ detection of the sound patterns of words in fluent speech. Cognitive Psychology, 29, 123. doi:10.1006/cogp.1995.1010Google Scholar
Jusczyk, P. W., Houston, D. M., & Newsome, M. (1999). The beginnings of word segmentation in English-learning infants. Cognitive Psychology, 39, 159207. doi:10.1006/cogp.1999.0716Google Scholar
Kandhadai, P., & Sproat, R. (2010). Impact of spatial ordering of graphemes in alphasyllabic scripts on phonemic awareness in Indic languages. Writing Systems Research, 2, 105116. doi:10.1093/wsr/wsq009Google Scholar
Karihwénhawe Lazore, D. (1993). The Mohawk language standardization project. https://kanienkeha.net/the-mohawk-language-standardisation-project/Google Scholar
Katz, J. J. (1980). Language and other abstract objects. Totowan, NJ: Rowman & Littlefield.Google Scholar
Katz, J. J. (1996). The unfinished Chomskyan revolution. Mind & Language, 11, 270294. doi:10.1111/j.1468-0017.1996.tb00047.xGoogle Scholar
Katz, J. J., & Postal, P. M. (1991). Realism vs conceptualism in linguistics. Linguistics and Philosophy, 14, 515554Google Scholar
Kazanina, N., Bowers, J. S., & Idsardi, W. J. (2018). Phonemes: Lexical access and beyond. Psychonomic Bulletin & Review, 25, 560585. doi:10.3758/s13423-017-1362-0Google Scholar
Kelso, J. A. S. (1997). Relative timing in brain and behavior: Some observations about the generalized motor program and self-organized coordination dynamics. Human Movement Science, 16, 453460. doi:10.1016/S0167-9457(96)00044-9Google Scholar
Kelso, J. A. S., Saltzman, E. L., & Tuller, B. (1986). The dynamical perspective on speech production: Data and theory. Journal of Phonetics, 14, 2959. doi:10.1016/S0095-4470(19)30608-4Google Scholar
Kemmerer, D. (2015a). Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychonomic Bulletin & Review, 22, 10681075. doi:10.3758/s13423-016-1031-8Google Scholar
Kemmerer, D. (2015b). Cognitive neuroscience of language. New York, NY: Psychology Press.Google Scholar
Kent, R. D. (1984). Psychobiology of speech development: Coemergence of language and a movement system. American Journal of Physiology, 246, R888R894. doi:10.1152/ajpregu.1984.246.6.R888Google Scholar
Kent, R. D. (1994). Reference manual for communicative sciences and disorders: Speech and language. Austin, TX: Pro-edGoogle Scholar
Kent, R. D. (2004). The uniqueness of speech among motor systems. Clinical Linguistics & Phonetics, 18, 495505. doi:10.1080/02699200410001703600Google Scholar
Kent, R. D., & Forner, L. L. (1980). Speech segment durations in sentence recitations by children and adults. Journal of Phonetics, 8, 157168. doi:10.1016/S0095-4470(19)31460-3Google Scholar
Kent, R. D., & Minifie, F. D. (1977). Coarticulation in recent speech production models. Journal of Phonetics, 5, 115133. doi:10.1016/S0095-4470(19)31123-4Google Scholar
Kent, R. D., & Moll, K. L. (1972). Tongue body articulation during vowel and diphthong gestures. Folia Phoniatrica, 24, 286300. doi:10.1159/000263574Google Scholar
Kent, R. D., & Vorperian, H. K. (1995). Development of the craniofacial–oral–laryngeal anatomy: A review. Journal of Medical Speech-Language Pathology, 3, 145190.Google Scholar
Kilian-Hütten, N., Formisano, E., & Vroomen, J. (2017). Multisensory integration in speech processing: Neural mechanisms of cross-modal aftereffects. In Mody, M. (ed.), Neural mechanisms of language (pp. 105126). New York, NY: Springer.Google Scholar
Kindell, J., Keady, J., Sage, K., et al. (2017). Everyday conversation in dementia: A review of the literature to inform research and practice. International Journal of Language & Communication Disorders, 52, 392406.Google Scholar
Kita, S. (1997). Two-dimensional semantic analysis of Japanese mimetics. Linguistics, 35, 379415. doi:10.1515/ling.1997.35.2.379Google Scholar
Klee, T., Schaffer, M., May, S., et al. (1989). A comparison of the age–MLU relation in normal and specifically language-impaired preschool children. Journal of Speech and Hearing Disorders, 54, 226233. doi:10.1044/jshd.5402.226Google Scholar
Kleiman, G. M., Winogard, P. N., & Humphrey, M. M. (1979). Prosody and children’s parsing of sentences. Urbana-Champaign, IL: University of Illinois.Google Scholar
Knuijt, S., Kalf, J., Van Engelen, B., et al. (2017). Reference values of maximum performance tests of speech production. International Journal of Speech-Language Pathology, 19. doi:10.1080/17549507.2017.1380227Google Scholar
Kocsis, B., Pittman-Polletta, B. R., & Roy, A. C. (2018). Respiration-coupled rhythms in prefrontal cortex: Beyond if, to when, how, and why. Brain Structure and Function, 223, 1116. doi:10.1007/s00429-017-1587-8Google Scholar
Kok, P., & de Lange, F. P. (2015). Predictive coding in sensory cortex. In Forstmann, B. U. & Wagenmakers, E.-J. (eds.), An introduction to model-based cognitive neuroscience (pp. 221244). New York, NY: Springer.Google Scholar
Kosslyn, S. M. (1980). Image and mind. Cambridge, UK: Cambridge University Press.Google Scholar
Kotz, S. A., & Gunter, T. C. (2015). Can rhythmic auditory cuing remediate language-related deficits in Parkinson’s disease? Annals of the New York Academy of Sciences, 1337, 6268. doi:10.1111/nyas.12657Google Scholar
Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. TRENDS in Cognitive Sciences, 14, 392399. doi:10.1016/j.tics.2010.06.005Google Scholar
Kousta, S.-T., Vigliocco, G., Vinson, D. P., et al. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140, 1434. doi:10.1037/a0021446Google Scholar
Kovelman, I., Mascho, K., Millott, L., et al. (2012). At the rhythm of language: Brain bases of language-related frequency perception in children. NeuroImage, 60, 673682. doi:10.1016/j.neuroimage.2011.12.066Google Scholar
Kozhevnikov, V. A., & Chistovich, L. A. (1966). Speech: Articulation and perception (2nd ed.). Washington, DC: Clearinghouse for Federal Scientific and Technical Information.Google Scholar
Koziol, L. F., Budding, D., Andreasen, N., et al. (2014). Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum, 13, 151177. doi:10.1007/s12311-013-0511-xGoogle Scholar
Koziol, L. F., Budding, D., & Chidekel, D. (2012). From movement to thought: Executive function, embodied cognition, and the cerebellum. Cerebellum, 11, 505525. doi:10.1007/s12311-011-0321-yGoogle Scholar
Krack, P., Dostrovsky, J., Ilinsky, I., et al. (2002). Surgery of the motor thalamus: Problems with the present nomenclatures. Movement Disorders, 17, S2S8. doi:10.1002/mds.10136Google Scholar
Kramsky, J. (1969). The word as a linguistic unit. The Hague, NL: Mouton.Google Scholar
Kraus, N., Anderson, S. R., & White-Schwoch, T. (2017). The frequency-following response: A window into human communication. In Kraus, N., Anderson, S. R., White-Schwoch, T., Fay, R. R., & Popper, R. N. (eds.), The frequency-following response: A window into human communication (pp. 115). Cham, CH: Springer & ASA Press.Google Scholar
Kraus, N., & White-Schwoch, T. (2015). Unraveling the biology of auditory learning: A cognitive–sensorimotor–reward framework. TRENDS in Cognitive Sciences, 19, 642654. doi:10.1016/j.tics.2015.08.017Google Scholar
Kress, G. (1994). Learning to write (2nd ed.). London, UK: Routledge.Google Scholar
Kuljic‐Obradovic, D. C. (2003). Subcortical aphasia: Three different language disorder syndromes? European Journal of Neurology, 10, 445448. doi:10.1046/j.1468-1331.2003.00604.xGoogle Scholar
Kumar, V., Croxson, P. L., & Simonyan, K. (2016). Structural organization of the laryngeal motor cortical network and its implication for evolution of speech production. Journal of Neuroscience, 36, 41704181. doi:10.1523/JNEUROSCI.3914-15.2016Google Scholar
Kurowski, K., & Blumstein, S. E. (2016). Phonetic basis of phonemic paraphasias in aphasia: Evidence for cascading activation. Cortex, 75, 193203. doi:10.1016/j.cortex.2015.12.005Google Scholar
Kurvers, J. (2015). Emerging literacy in adult second-language learners: A synthesis of research findings in the Netherlands. Writing Systems Research, 7, 5878. doi:10.1080/17586801.2014.943149Google Scholar
Kuypers, H. G. (1958). Corticobular connexions to the pons and lower brain-stem in man: An anatomical study. Brain, 81, 364388. doi:10.1093/brain/81.3.364Google Scholar
Kwantes, P. J. (2005). Using context to build semantics. Psychonomic Bulletin & Review, 12, 703710. doi:10.3758/BF03196761Google Scholar
Ladefoged, P. (1962). Subglottal activity during speech. In Proceedings of the Fourth International Congress of Phonetic Sciences (pp. 7391). The Hague, NL: Mouton.Google Scholar
Ladefoged, P. (1967). Three areas of experimental phonetics. London, UK: Oxford University Press.Google Scholar
Ladefoged, P. (1971). Preliminaries to linguistic phonetics. Chicago, IL: University of Chicago Press.Google Scholar
Ladefoged, P. (1973). The features of the larynx. Journal of Phonetics, 1, 7383. doi:10.1016/S0095-4470(19)31376-2Google Scholar
Ladefoged, P. (1984). The limits of biological explanations in phonetics. UCLA Working Papers in Phonetics, 59, 110.Google Scholar
Lafleur, A., & Boucher, V. J. (2015). The ecology of self-monitoring effects on memory of verbal productions: Does speaking to someone make a difference? Consciousness and Cognition, 36, 139146. doi:10.1016/j.concog.2015.06.015Google Scholar
Lakatos, P., Barczak, A., Neymotin, S. A., et al. (2016). Global dynamics of selective attention and its lapses in primary auditory cortex. Nature Neuroscience, 19, 17071717. doi:10.1038/nn.4386Google Scholar
Lakatos, P., Chen, C.-M., O’Connell, M. N., et al. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53, 279292. doi:10.1016/j.neuron.2006.12.011Google Scholar
Lakatos, P., Karmos, G., Mehta, A. D., et al. (2008). Entrainment of neuronal sscillations as a mechanism of attentional selection. Science, 320, 110113. doi:10.1126/science.1154735Google Scholar
Lakatos, P., O’Connell, M. N., Barczak, A., et al. (2009). The leading sense: Supramodal control of neurophysiological context by attention. Neuron, 64, 419430. doi:10.1016/j.neuron.2009.10.014Google Scholar
Lakatos, P., Shah, A. S., Knuth, K. H., et al. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94, 19041911. doi:10.1152/jn.00263.2005Google Scholar
Lamarre, Y., Bioulac, B., & Jacks, B. (1978). Activity of pre-central neurones in conscious monkeys: Effects of deafferentation and cerebellar ablation. Journal de Physiologie, 74, 253264.Google Scholar
Lametti, D. R., Krol, S. A., Shiller, D. M., et al. (2014). Brief periods of auditory perceptual training can determine the sensory targets of speech motor learning. Psychological Science, 25, 13251336. doi:10.1177/0956797614529978Google Scholar
Lametti, D. R., Smith, H. J., Freidin, P. F., et al. (2018). Cortico–cerebellar networks drive sensorimotor learning in speech. Journal of Cognitive Neuroscience, 30, 540551. doi:10.1162/jocn_a_01216Google Scholar
Langacker, R. W. (1991). Foundations of cognitive grammar: Descriptive application (Vol. II). Stanford, CA: Stanford University Press.Google Scholar
Langacker, R. W. (1995). Conceptual grouping and constituency in cognitive grammar. Linguistics in the Morning Calm, 3, 149172.Google Scholar
Lashley, K. S. (1948/1951). The problem of serial order in behavior. In Jeffress, L. A. (ed.), Cerebral mechanisms in behavior (pp. 112147). New York, NY: Wiley.Google Scholar
Latash, M. L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor control, 14, 294322.Google Scholar
Leavens, D., Racine, T. P., & Hopkins, W. D. (2009). The ontogeny and phylogeny of non-verbal deixis. In Botha, R. P. & Knight, C. (eds.), The prehistory of language (pp. 142165). New York, NY: Oxford University Press.Google Scholar
Lee, N., & Schumann, J. H. (2005). The interactional instinct: The evolution and acquisition of language. Paper presented at the Congress of the International Association for Applied Linguistics, Madison, WI. doi:10.1.1.510.5379&Google Scholar
Lega, B. C., Jacobs, J., & Kahana, M. J. (2012). Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 22, 748761. doi:10.1002/hipo.20937Google Scholar
Legate, J. A., & Yang, C. D. (2002). Empirical re-assessment of stimulus poverty arguments. The Linguistic Review, 19, 151162. doi:10.1515/tlir.19.1-2.151Google Scholar
Lehmann, A., & Schönwiesner, M. (2014). Selective attention modulates human auditory brainstem responses: Relative contributions of frequency and spatial cues. PLoS One, 9, e85442. doi:10.1371/journal.pone.0085442Google Scholar
Lemon, R. N. (2008). Descending pathways in motor control. Annual Review of Neuroscience, 31, 195218. doi:10.1146/annurev.neuro.31.060407.125547Google Scholar
Lemon, R. N., & Edgley, S. A. (2010). Life without a cerebellum. Brain, 133, 652654. doi:10.1093/brain/awq030Google Scholar
Lenneberg, E. H. (1967). Biological foundations of language. New York, NY: Wiley.Google Scholar
Lesage, E., Morgan, B. E., Olson, A. C., et al. (2012). Cerebellar rTMS disrupts predictive language processing. Current Biology, 22, R794-R795. doi:10.1016/j.cub.2012.07.006Google Scholar
Leshinskaya, A., & Caramazza, A. (2016). For a cognitive neuroscience of concepts: Moving beyond the grounding issue. Psychonomic Bulletin & Review, 23, 9911001. doi:10.3758/s13423-015-0870-zGoogle Scholar
Leutgeb, J. K., Leutgeb, S., Treves, A., et al. (2005). Progressive transformation of hippocampal neuronal representations in “morphed” environments. Neuron, 48, 345358. doi:10.1016/j.neuron.2005.09.007Google Scholar
Leutgeb, S., Leutgeb, J. K., Barnes, C. A., et al. (2005). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science, 309, 619623. doi:10.1126/science.1114037Google Scholar
Levelt, W. J. M. (1989). Speaking: From intention to articulation. Cambridge, MA: MIT Press.Google Scholar
Levelt, W. J. M. (1993). Timing in speech production with special reference to word form encoding. In Tallal, P., Galaburda, A. M., Llinás, R. R., & Von Euler, C. (eds.), Temporal information processing in the nervous system. Special reference to dyslexia and dysphasia (Vol. 682, pp. 283295). New York, NY: New York Academy of Sciences.Google Scholar
Levelt, W. J. M. (2000). Producing spoken language: A blueprint of the speaker. In Brown, C. M. & Hagoort, P. (eds.), The neurocognition of language (pp. 83122). Oxford, UK: Oxford University Press.Google Scholar
Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences, 98, 1346413471. doi:10.1073/pnas.231459498Google Scholar
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 175. doi:10.1017/s0140525x99001776.Google Scholar
Levelt, W. J. M., & Wheeldon, L. (1994). Do speakers have access to a mental syllabary? Cognition, 50, 239269. doi:10.1016/0010-0277(94)90030-2Google Scholar
Levisen, C. (2018). Biases we live by: Anglocentrism in linguistics and cognitive sciences. Language Sciences. doi:10.1016/j.langsci.2018.05.010Google Scholar
Liberman, A. M. (1993). Some assumptions about speech and how they changed. Haskins Laboratories Report on Speech Research, SR-113, 132.Google Scholar
Liberman, A. M., Cooper, F. S., Shankweiler, D. P., et al. (1967). Perception of the speech code. Psychological Review, 74, 431461. doi:10.1037/h0020279Google Scholar
Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 136. doi:10.1016/0010-0277(85)90021-6Google Scholar
Liberman, I. Y., Shankweiler, D., Fischer, F. W., et al. (1974). Explicit syllable and phoneme segmentation in the young child. Journal of Experimental Child Psychology, 18, 201212. doi:10.1016/0022-0965(74)90101-5Google Scholar
Lieberman, P. (1968). Primate vocalizations and human linguistic ability. The Journal of the Acoustical Society of America, 44, 15741584. doi:10.1121/1.1911299Google Scholar
Lieberman, P. (1984). The biology and evolution of language. Cambridge, MA: Harvard University Press.Google Scholar
Lieberman, P. (2000). Human language and our reptilian brain. Cambridge, MA: Harvard University Press.Google Scholar
Lieberman, P. (2003). Language evolution and innateness. In Banich, M. T. & Mack, M. (eds.), Mind, brain, and language: Multidisciplinary perspectives (pp. 321). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Lieberman, P. (2006a). Limits on tongue deformation: Diana monkey vocalizations and the impossible vocal tract shapes proposed by Riede et al. (2005). Journal of Human Evolution, 50, 219221. doi:10.1016/j.jhevol.2005.07.010Google Scholar
Lieberman, P. (2006b). Towards an evolutionary biology of language. Cambridge, MA: Harvard University Press.Google Scholar
Lieberman, P. (2007). The evolution of human speech. Its anatomical and neural bases. Current Anthropology, 48, 3966. doi:10.1086/509092Google Scholar
Lieberman, P. (2016). The evolution of language and thought. Journal of Anthropological Science, 94, 127146. doi:10.4436/JASS.94029Google Scholar
Lieberman, P., Crelin, E. S., & Klatt, D. H. (1972). Phonetic ability and related anatomy of the newborn and adult human, Neanderthal man, and the chimpanzee. American Anthropologist, 74, 287307. doi:10.1525/aa.1972.74.3.02a00020Google Scholar
Lieberman, P., Laitman, J. T., Reidenberg, J. S., et al. (1992). The anatomy, physiology, acoustics and perception of speech: Essential elements in analysis of the evolution of human speech. Journal of Human Evolution, 23, 447467. doi:10.1016/0047-2484(92)90046-CGoogle Scholar
Lieven, E., Behrens, H., Speares, J., et al. (2003). Early syntactic creativity: A usage-based approach. Journal of Child Language, 30, 333370. doi:10.1111/j.1467-7687.2007.00629.xGoogle Scholar
Lieven, E., Pine, J. M., & Baldwin, G. (1997). Lexically-based learning and early grammatical development. Journal of Child Language, 24, 187220. doi:10.1017/S0305000996002930Google Scholar
Lightfoot, D. (1989). The child’s trigger experience: Degree-0 learnability. Behavioral and Brain Sciences, 12, 321334. doi:10.1017/S0140525X00048883Google Scholar
Lin, J.-J., Rugg, M. D., Das, S., et al. (2017). Theta band power increases in the posterior hippocampus predict successful episodic memory encoding in humans. Hippocampus, 27, 10401053. doi:10.1002/hipo.22751Google Scholar
Lin, T. J., Anderson, R. C., Ku, Y. M., et al. (2011). Chinese children’s concept of word. Writing Systems Research, 3, 4157. doi:10.1093/wsr/wsr007Google Scholar
Lindblom, B. (1986). Phonetic universals in vowel systems. In Ohala, J. J. & Jaeger, J. J. (eds.), Experimental phonology (pp. 1344). Orlando, FL: Academic Press.Google Scholar
Lindblom, B. (1999). Emergent phonology. Annual Meeting of the Berkeley Linguistics Society, 25, 195209.Google Scholar
Lindblom, B. (2000). Developmental origins of adult phonology: The interplay between phonetic emergents and evolutionary adaptations of sound patterns. Phonetica, 57, 297314. doi:10.1159/000028482Google Scholar
Lindblom, B., Lyberg, B., & Holmgren, K. (1981). Durational patterns of Swedish phonology: Do they reflect short-term memory processes? Bloomingtion, IN: Indiana University Linguistics Club.Google Scholar
Lindblom, B., MacNeilage, P. F., & Studdert-Kennedy, M. (1984). Self-organizing processes and the explanation of phonological universals. In Butterworth, B., Comrie, B., & Dahl, Ö. (eds.), Explanations for language universals (pp. 181203). Berlin, DE: Mouton.Google Scholar
Linell, P. (2005). The written language bias in linguistics: Its nature, origins and transformations. New York, NY: Routledge.Google Scholar
Lisman, J. (2010). Working memory: The importance of theta and gamma oscillations. Current Biology, 20, R490R492. doi:10.1016/j.cub.2010.04.011Google Scholar
Livingstone, M., Srihasam, K., & Morocz, I. (2010). The benefit of symbols: Monkeys show linear, human-like, accuracy when using symbols to represent scalar value. Animal Cognition, 13, 711719. doi:10.1007/s10071-010-0321-1Google Scholar
Livingstone, M. S., Pettine, W. W., Srihasam, K., et al. (2014). Symbol addition by monkeys provides evidence for normalized quantity coding. Proceedings of the National Academy of Sciences, 111, 68226827. doi:10.1073/pnas.1404208111Google Scholar
Locke, J. L. (1995). The child’s path to spoken language. Cambridge, MA: Harvard University Press.Google Scholar
Lotto, A. J., & Holt, L. L. (2000). The illusion of the phoneme. In Billings, S. J. (ed.), Panels chicago linguistic society (Vol. 35, pp. 191204). Chicago, IL: Chicago Linguistic Society. doi:10.1184/R1/6618578.v1Google Scholar
Love, N. (ed.) (2014). The foundations of linguistic theory: Selected writings of Roy Harris. London, UK: Routlege.Google Scholar
Lowe, R. (1981). Analyse linguistique et ethnocentrisme. Essai sur la structure du mot en inuktitut. Ottawa, ON: Musée National de l’Homme.Google Scholar
, X., & Zhang, J. (1999). Reading efficiency: A comparative study of English and Chinese orthographies. Literacy Research and Instruction, 38, 301317. doi:10.1080/19388079909558298Google Scholar
Ludtke, H. (1969). Die Alphabetschrift und das Problem des Lautsegmentierung. Phonetica, 20, 147176. doi:10.1159/000259279Google Scholar
Lundberg, I. (1987). Are letters necessary for the development of phonemic awareness? European Bulletin of Cognitive Psychology, 7, 472475.Google Scholar
Lundberg, I. (1991). Phonemic awareness can be developed without reading instruction. In Brady, S. A. & Shankweiler, D. P. (eds.), Phonological processes in literacy: A tribute to Isabelle Y. Liberman (pp. 4753). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Lundberg, I. (1999). Learning to read in Scandinavia. In Harris, M. O. & Hatano, G. (eds.), Learning to read and write: A cross-linguistic perspective (pp. 157172). Cambridge, UK: Cambrige University Press.Google Scholar
Lundberg, I., Olofsson, Å., & Wall, S. (1980). Reading and spelling skills in the first school years predicted from phonemic awareness skills in kindergarten. Scandinavian Journal of Psychology, 21, 159173. doi:doi:10.1111/j.1467-9450.1980.tb00356.xGoogle Scholar
Luo, H., & Poeppel, D. (2012). Cortical oscillations in auditory perception and speech: Evidence for two temporal windows in human auditory cortex. Frontiers in Psychology, 3. doi:/10.3389/fpsyg.2012.00170Google Scholar
Lurie, D. B. (2006). Language, writing, and disciplinarity in the critique of the “ideographic myth”: Some proleptical remarks. Language & Communication, 26, 250269. doi:10.1016/j.langcom.2006.02.015Google Scholar
Lyn, H., & Savage-Rumbaugh, E. S. (2000). Observational word learning by two bonobos: Ostensive and non-ostensive contexts. Language & Communication, 20, 255273. doi:10.1016/S0271-5309(99)00026-9Google Scholar
Lynch, M. P., Oller, D. K., Steffens, M. L., et al. (1995). Phrasing in prelinguistic vocalizations. Developmental Psychobiology, 28, 325. doi:10.1002/dev.420280103Google Scholar
Lynip, A. (1951). The use of magnetic devices in the collection and analysis of preverbal utterances of an infant. Genetic Psychology Monograph, 44, 221262.Google Scholar
Lyons, J. (1991). In defence of (so-called) autonomous linguistics. In Natural language and universal grammar: Essays in linguistic theory (Vol. 1, pp. 1226). Cambridge, UK: Cambridge University Press.Google Scholar
MacKay, D. G., Stewart, R., & Burke, D. M. (1998). HM revisited: Relations between language comprehension, memory, and the hippocampal system. Journal of Cognitive Neuroscience, 10, 377394. doi:10.1162/089892998562807Google Scholar
MacKenzie, H., Graham, S. A., & Curtin, S. (2011). Twelve‐month‐olds privilege words over other linguistic sounds in an associative learning task. Developmental Science, 14, 249255. doi:10.1111/j.1467-7687.2010.00975.xGoogle Scholar
Maclarnon, A., & Hewitt, G. (1999). The evolution of human speech: The role of enhanced breathing control. American Journal of Physical Anthropology, 109, 341363. doi:10.1002/(SICI)1096-8644(199907)109:3<341::AID-AJPA5>3.0.CO2-2Google Scholar
Maclarnon, A., & Hewitt, G. (2004). Increased breathing control: Another factor in the evolution of human language. Evolutionary Anthropology: Issues, News, and Reviews, 13, 181197. doi:10.1002/evan.20032Google Scholar
MacNeilage, P. F. (1970). Motor control of serial ordering of speech. Psychological Review, 77, 182196. doi:10.1037/h0029070Google Scholar
MacNeilage, P. F. (1998). The frame/content theory of evolution of speech production. Behavioral and Brain Sciences, 21, 499546. doi:10.1017/s0140525x98001265Google Scholar
MacNeilage, P. F. (2010). The origin of speech. New York, NY: Oxford University Press.Google Scholar
MacNeilage, P. F., & Davis, B. L. (2000). On the origin of internal structure of word forms. Science, 288, 527531. doi:10.1126/science.288.5465.527Google Scholar
MacNeilage, P. F., & DeClerk, J. L. (1967). On the motor control of coarticulation in CVC monosyllables. Haskins Laboratories Status Report: SR-12, 978. doi:10.1121/1.1911593Google Scholar
MacNeilage, P. F., & Ladefoged, P. (1976). The production of speech and language. In Cartere, E. C. & Friedman, M. P. (eds.), Handbook of perception (Vol. 7, pp. 76120). New York, NY: Academic Press.Google Scholar
MacWhinney, B. (2000). The CHILDES Project: Tools for analyzing talk. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
MacWhinney, B. (2019). Tools for analyzing talk, Part 1: The CHAT transcription format. doi:10.21415/3mhn-0z89Google Scholar
Maeda, S. (1990). Compensatory articulation during speech: Evidence from the analysis and synthesis of vocal-tract shapes using an articulatory model. In Hardcastle, W. J. & Marchal, A. (eds.), Speech production and speech modelling (pp. 131149). Boston, MA: Kluwer Academic.Google Scholar
Magrassi, L., Aromataris, G., Cabrini, A., et al. (2015). Sound representation in higher language areas during language generation. Proceedings of the National Academy of Sciences, 112, 1868–1873. doi:10.1073/pnas.1418162112Google Scholar
Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30, 420429. doi:10.1080/23273798.2014.987791Google Scholar
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology-Paris, 102, 5970. doi:10.1016/j.jphysparis.2008.03.004Google Scholar
Mahon, B. Z., & Hickok, G. (2016). Arguments about the nature of concepts: Symbols, embodiment, and beyond. Psychonomic Bulletin & Review, 23, 941958. doi:10.3758/s13423-016-1045-2Google Scholar
Mallory, C. S., & Giocomo, L. M. (2018). Heterogeneity in hippocampal place coding. Current Opinion in Neurobiology, 49, 158167. doi:10.1016/j.conb.2018.02.014Google Scholar
Malmberg, B. (1972). Les nouvelles tendances de la linguistique. Paris, FR: Presses Universitaires de France.Google Scholar
Mann, V. A. (1986). Phonological awareness: The role of reading experience. Haskins Laboratories: Status Report on Speech Research, SR-85, 122.Google Scholar
Mann, V. A. (1991). Are we taking too narrow a view of the conditions for development of phonological awareness. In Brady, S. A. & Shankweiler, D. P. (eds.), Phonological processes in literacy: A tribute to Isabelle Y. Liberman (pp. 5564). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Marian, V., Bartolotti, J., Chabal, S., et al. (2012). CLEARPOND: Cross-linguistic easy-access resource for phonological and orthographic neighborhood densities. PLoS One, 7, e43230. doi:10.1371/journal.pone.0043230Google Scholar
Marie, P. (1906). Que faut-il penser des aphasies sous-corticales aphasies pures? Semaine Médicale, 26, 493500.Google Scholar
Mariën, P. (2017). A role for the cerebellum in language and related cognitive and affective functions. In Mody, M. (ed.), Neural mechanisms of language (pp. 175198). New York, NY: Springer.Google Scholar
Marno, H., Farroni, T., Dos Santos, Y. V., et al. (2015). Can you see what I am talking about? Human speech triggers referential expectation in four-month-old infants. Scientific Reports, 5, 13594. doi:10.1038/srep13594Google Scholar
Marno, H., Guellai, B., Vidal, Y., et al. (2016). Infants’ selectively pay attention to the information they receive from a native speaker of their language. Frontiers in Psychology, 7, 1150. doi:10.3389/fpsyg.2016.01150Google Scholar
Marquardt, T. P., Sussman, H. M., Snow, T., et al. (2002). The integrity of the syllable in developmental apraxia of speech. Journal of Communication Disorders, 35, 3149. doi:10.1016/S0021-9924(01)00068-5Google Scholar
Marslen-Wilson, W. (2001). Access to lexical representations: Cross-linguistic issues. Language and Cognitive Processes, 16, 699708. doi:10.1080/01690960143000164Google Scholar
Martin, A. J. (2016). GRAPES – Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin & Review, 23, 979990. doi:10.3758/s13423-015-0842-3Google Scholar
Martin, J. G. (1972). Rhythmic (hierarchical) versus serial structure in speech and other behavior. Psychological Review, 79, 487509.Google Scholar
Martin, P. (2014). Ondes cérébrales et contraintes de la structure prosodique. Synergies Europe, 9, 161176.Google Scholar
Martin, P. (2015). The structure of spoken language: Intonation in Romance. Cambridge, UK: Cambridge University Press.Google Scholar
Marvel, C. L., & Desmond, J. E. (2010). Functional topography of the cerebellum in verbal working memory. Neuropsychology Review, 20, 271279. doi:10.1007/s11065-010-9137-7Google Scholar
Massaro, D. W., & Perlman, M. (2017). Quantifying iconicity’s contribution during language acquisition: Implications for vocabulary learning. Frontiers in Communication, 2. doi:10.3389/fcomm.2017.00004Google Scholar
Matheson, H. E., & Barsalou, L. W. (2018). Embodiment and grounding in cognitive neuroscience. In Wixted, J. T. (ed.), The Stevens’ handbook of experimental psychology and cognitive neuroscience (pp. 132). New York, NY: Wiley.Google Scholar
Mattingly, I. G. (1987). Morphological structure and segmental awareness. Haskins Laboratories Report on Speech Research, SR-92, 107111.Google Scholar
Mattox, S. T., Valle-Inclán, F., & Hackley, S. A. (2006). Psychophysiological evidence for impaired reward anticipation in Parkinson’s disease. Clinical Neurophysiology, 117, 21442153. doi:10.1016/j.clinph.2006.05.026Google Scholar
Mattys, S. L., Jusczyk, P. W., Luce, P. A., et al. (1999). Phonotactic and prosodic effects on word segmentation in infants. Cognitive Psychology, 38, 465494. doi:10.1006/cogp.1999.0721Google Scholar
Mattys, S. L., White, L., & Melhorn, J. F. (2005). Integration of multiple speech segmentation cues: A hierarchical framework. Journal of Experimental Psychology: General, 134, 477500. doi:10.1037/0096-3445.134.4.477Google Scholar
Maurer, D., Pathman, T., & Mondloch, C. J. (2006). The shape of boubas: Sound–shape correspondences in toddlers and adults. Developmental Science, 9, 316322. doi:10.1111/j.1467-7687.2006.00495.xGoogle Scholar
McCarthy, J. J. (1982). Prosodic templates, morphemic templates, and morphemic tiers. In van der Hulst, H. & Smith, B. N. (eds.), The structure of phonological representations (Linguistic Models 2) (pp. 191223). Dordrecht, NL: Foris.Google Scholar
McClelland, J. L., Mirman, D., & Holt, L. L. (2006). Are there interactive processes in speech perception? TRENDS in Cognitive Sciences, 10, 363369. doi:10.1016/j.tics.2006.06.007Google Scholar
McClelland, J. L., & Rumelhart, D. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.Google Scholar
McDougle, S. D., Ivry, R. B., & Taylor, J. A. (2016). Taking aim at the cognitive side of learning in sensorimotor adaptation tasks. TRENDS in Cognitive Sciences, 20, 535544. doi:10.1016/j.tics.2016.05.002Google Scholar
McFarland, D. H. (2001). Respiratory markers of conversational interaction. Journal of Speech, Language, and Hearing Research, 44, 128143. doi:10.1044/1092-4388(2001/012)Google Scholar
McFarland, D. H., & Smith, A. (1992). Effects of vocal task and respiratory phase on prephonatory chest wall movements. Journal of Speech, Language, and Hearing Research, 35, 971982. doi:10.1044/jshr.3505.971Google Scholar
McGillion, M., Herbert, J. S., Pine, J. M., et al. (2017). What paves the way to conventional language? The predictive value of babble, pointing, and socioeconomic status. Child Development, 88, 156166. doi:10.1111/cdev.12671Google Scholar
McGilvray, J. (1999). Chomsky: Language, mind and politics. Cambridge, MA: Polity Press.Google Scholar
McLachlan, N. M., & Wilson, S. J. (2017). The contribution of brainstem and cerebellar pathways to auditory recognition. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.00265Google Scholar
McNeill, D. (2005). Gesture and thought. Chicago, IL: University of Chicago Press.Google Scholar
McNorgan, C., Reid, J., & McRae, K. (2011). Integrating conceptual knowledge within and across representational modalities. Cognition, 118, 211233. doi:10.1016/j.cognition.2010.10.017Google Scholar
Mégevand, P., Mercier, M. R., Groppe, D. M., et al. (2018). Phase resetting in human auditory cortex to visual speech. bioRxiv, 405597. doi:10.1101/405597Google Scholar
Meister, I. G., Wilson, S. M., Deblieck, C., et al. (2007). The essential role of premotor cortex in speech perception. Current Biology, 17, 16921696. doi:10.1016/j.cub.2007.08.064Google Scholar
Merkus, P. J. F. M., de Jongste, J. C., & Stocks, J. (2005). Respiratory function measurements in infants and children. Lung function testing. European Respiratory Society Monograph, 31, 166194.Google Scholar
Meteyard, L., & Vigliocco, G. (2018). Lexico-semantics. In Rueschemeyer, S.-A. & Gaskell, M. G. (eds.), The Oxford handbook of psycholinguistics. New York, NY: Oxford University Press.Google Scholar
Meyer, L. (2017). The neural oscillations of speech processing and language comprehension: State of the art and emerging mechanisms. European Journal of Neuroscience, 48, 113. doi:10.1111/ejn.13748Google Scholar
Meyer, L., Henry, M. J., Gaston, P., et al. (2016). Linguistic bias modulates interpretation of speech via neural delta-band oscillations. Cerebral Cortex, 110. doi:10.1093/cercor/bhw228Google Scholar
Miall, R. C., Christensen, L. O. D., Cain, O., et al. (2007). Disruption of state estimation in the human lateral cerebellum. PLoS Biology, 5, e316. doi:10.1371/journal.pbio.0050316Google Scholar
Miceli, G., Silveri, M. C., Nocentini, U., et al. (1988). Patterns of dissociation in comprehension and production of nouns and verbs. Aphasiology, 2, 351358.Google Scholar
Miller, G. A. (1956). The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 8197.Google Scholar
Miller, G. A. (1962). Decision units in the perception of speech. IRE Transactions on Information Theory, 8, 8183. doi:10.1109/TIT.1962.1057697Google Scholar
Miller, G. A. (2003). The cognitive revolution: A historical perspective. TRENDS in Cognitive Sciences, 7, 141144. doi:10.1016/S1364-6613(03)00029-9Google Scholar
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York, NY: Henry Holt.Google Scholar
Miller, J., & Weinert, R. (1998). Spontaneous spoken language. Oxford, UK: Clarendon Press.Google Scholar
Miller, J. F., & Chapman, R. S. (1981). The relation between age and mean length of utterance in morphemes. Journal of Speech and Hearing Research, 24, 154161. doi:10.1044/jshr.2402.154Google Scholar
Miller, K. F. (2002). Children’s early understanding of writing and language: The impact of characters and alphabetic orthographies. In Wenling, L., Anderson, R. C., & Nagy, W. (eds.), Chinese children’s reading acquisition (pp. 1729). Boston, MA: Springer.Google Scholar
Mithun, M. (1989). The acquisition of polysynthesis. Journal of Child Language, 16, 285312. doi:10.1017/S0305000900010424Google Scholar
Mizumori, S. J. Y., Puryear, C. B., & Martig, A. K. (2009). Basal ganglia contributions to adaptive navigation. Behavioural Brain Research, 199, 3242. doi:10.1016/j.bbr.2008.11.014Google Scholar
Moberget, T., & Ivry, R. B. (2016). Cerebellar contributions to motor control and language comprehension: Searching for common computational principles. Annals of the New York Academy of Sciences, 1369, 154171. doi:10.1111/nyas.13094Google Scholar
Moll, K. L., & Daniloff, R. G. (1971). Investigation of the timing of velar movements during speech. Journal of the Acoustical Society of America, 50, 678684.Google Scholar
Mollo, G., Pulvermüller, F., & Hauk, O. (2016). Movement priming of EEG/MEG brain responses for action-words characterizes the link between language and action. Cortex, 74, 262276. doi:10.1016/j.cortex.2015.10.021Google Scholar
Monaco, J. D., Rao, G., Roth, E. D., et al. (2014). Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nature Neuroscience, 17, 725. doi:10.1038/nn.3687Google Scholar
Monaghan, P., & Christiansen, M. H. (2006). Why form-meaning mappings are not entirely arbitrary in language. Proceedings of the 28th Annual Conference of the Cognitive Science Society, 18381843. doi:csjarchive.cogsci.rpi.edu/proceedings/2006/docs/p1838.pdfGoogle Scholar
Monaghan, P., Christiansen, M. H., & Fitneva, S. A. (2011). The arbitrariness of the sign: learning advantages from the structure of the vocabulary. Journal of Experimental Psychology: General, 140, 325347. doi:10.1037/a0022924Google Scholar
Monaghan, P., Mattock, K., & Walker, P. (2012). The role of sound symbolism in language learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 38, 11521164. doi:10.1037/a0027747Google Scholar
Monaghan, P., & Rowland, C. F. (2017). Combining language corpora with experimental and computational approaches for language acquisition research. Language Learning, 67, 1439. doi:10.1111/lang.12221Google Scholar
Monaghan, P., Shillcock, R. C., Christiansen, M. H., et al. (2014). How arbitrary is language? Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130299. doi:10.1098/rstb.2013.0299Google Scholar
Morais, J. (1991). Constraints on the development of phonological awareness. In Brady, S. & Shankweiler, D. (eds.), Phonological processes in literacy: A tribute to Isabelle Y. Liberman (pp. 527). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Morais, J., Alegría, J., & Content, A. (1987). The relationships between segmental analysis and alphabetic literacy: An interactive view. Cahiers de psychologie cognitive, 7, 415438.Google Scholar
Morais, J., Cary, L., Alegria, J., et al. (1979). Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7, 323331. doi:10.1016/0010-0277(79)90020-9Google Scholar
Morais, J., Kolinsky, R., Alegria, J., et al. (1998). Alphabetic literacy and psychological structure. Letras de Hoje, 33, 6179.Google Scholar
Morgan, J. L. (1996). Prosody and the roots of parsing. Language and Cognitive Processes, 11, 69106. doi:10.1080/016909696387222Google Scholar
Morton, E. S. (1994). Sound symbolism and its role in non-human vertebrate communication. In Hinton, L., Nichols, J., & Ohala, J. J. (eds.), Sound symbolism (pp. 348365). Cambridge, UK: Cambridge University Press.Google Scholar
Moseley, R. L., Kiefer, M., & Pulvermüller, F. (2015). Grounding and embodiment of concepts and meaning. In Coello, Y. & Fischer, M. H. (eds.), Perceptual and emotional embodiment: Foundations of embodied cognition (Vol. 1, pp. 93113). London, UK: Routledge.Google Scholar
Moseley, R. L., & Pulvermüller, F. (2014). Nouns, verbs, objects, actions, and abstractions: Local fMRI activity indexes semantics, not lexical categories. Brain and Language, 132, 2842. doi:10.1016/j.bandl.2014.03.001Google Scholar
Moser, M.-B., Rowland, D. C., & Moser, E. I. (2015). Place cells, grid cells, and memory. Cold Spring Harbor Perspectives in Biology, 7. doi:10.1101/cshperspect.a021808Google Scholar
Mower, G., Gibson, A., & Glickstein, M. (1979). Tectopontine pathway in the cat: Laminar distribution of cells of origin and visual properties of target cells in dorsolateral pontine nucleus. Journal of Neurophysiology, 42, 115. doi:10.1152/jn.1979.42.1.1Google Scholar
Mowrey, R. A., & MacKay, I. R. (1990). Phonological primitives: Electromyographic speech error evidence. Journal of the Acoustical Society of America, 88, 12991312. doi:10.1121/1.399706Google Scholar
Mtui, E., Gruener, G., & Dockery, P. (2015). Fitzgerald’s clinical neuroanatomy and neuroscience. Edingburgh, UK: Elsevier Saunders.Google Scholar
Mu, Y., Cerritos, C., & Khan, F. (2018). Neural mechanisms underlying interpersonal coordination: A review of hyperscanning research. Social and Personality Psychology Compass, 12, e12421. doi:10.1111/spc3.12421Google Scholar
Murdoch, B. E. (2001). Subcortical brain mechanisms in speech and language. Folia Phoniatrica et Logopaedica, 53, 233251. doi:10.1159/000052679Google Scholar
Murdoch, B. E. (2010a). Acquired speech and language disorders: A neuroanatomical and functional neurological approach. Chichester, UK: Willey-Blackwell.Google Scholar
Murdoch, B. E. (2010b). The cerebellum and language: Historical perspective and review. Cortex, 46, 858868. doi:10.1016/j.cortex.2009.07.018Google Scholar
Murdoch, B. E., & Whelan, B.-M. (2009). Speech and language disorders associated with subcortical pathology. Chichester, UK: Wiley-Blackwell.Google Scholar
Murray, S. O. (1994). Theory groups and the study of language in North America: A social history. Amsterdam, NL: Benjamins.Google Scholar
Näätänen, R., Paavilainen, P., Rinne, T., et al. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 25442590. doi:10.1016/j.clinph.2007.04.026Google Scholar
Nakamura, K. C., Sharott, A., & Magill, P. J. (2012). Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus. Cerebral Cortex, 24, 8197. doi:10.1093/cercor/bhs287Google Scholar
Nam, H., Goldstein, L., & Saltzman, E. (2009). Self-organization of syllable structure: A coupled oscillator model. In Pellegrino, F., Marisco, E., Chitoran, I., & Coupé, C. (eds.), Approaches to phonological complexity (Vol. 16, pp. 299328). New York, NY: Mouton.Google Scholar
Nam, H., Goldstein, L., Saltzman, E., et al. (2004). TADA: An enhanced, portable Task Dynamics model in MATLAB. Journal of the Acoustical Society of America, 115, 2430.Google Scholar
Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal “hyperdirect” pathway. Neuroscience Research, 43, 111117. doi:10.1016/S0168-0102(02)00027-5Google Scholar
Namburi, P., Al-Hasani, R., Calhoon, G. G., et al. (2015). Architectural representation of valence in the limbic system. Neuropsychopharmacology, 41, 16971715. doi:10.1038/npp.2015.358Google Scholar
Nathani, S., & Oller, D. K. (2001). Beyond ba-ba and gu-gu: Challenges and strategies in coding infant vocalizations. Behavior Research Methods, Instruments, & Computers, 33, 321330. doi:10.3758/bf03195385Google Scholar
Nazzi, T., Iakimova, G., Bertoncini, J., et al. (2006). Early segmentation of fluent speech by infants acquiring French: Emerging evidence for crosslinguistic differences. Journal of Memory and Language, 54, 283299. doi:10.1016/j.jml.2005.10.004Google Scholar
Negus, V. E. (1949). The comparative anatomy and physiology of the larynx. New York, NY: Grune & Stratton.Google Scholar
Neininger, B., & Pulvermüller, F. (2003). Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia, 41, 5370. doi:10.1016/S0028-3932(02)00126-4Google Scholar
Nespor, M., & Vogel, I. H. (1983). Prosodic structure above the word. In Cutler, A. & Ladd, D. R. (eds.), Prosody: Models and measurements (pp. 123140). Berlin, DE: Springer.Google Scholar
Nespor, M., & Vogel, I. H. (1986). Prosodic phonology. Dordrecht, NL: Foris.Google Scholar
Newmeyer, F. J. (1986a). Linguistic theory in America. The first quarter-century of transformational generative grammar. New York, NY: Academic Press.Google Scholar
Newmeyer, F. J. (1986b). The politics of linguistics. Chicago IL: Chicago University Press.Google Scholar
Newmeyer, F. J. (2010). Formalism and functionalism in linguistics. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 301307. doi:10.1002/wcs.6Google Scholar
Nieminen, L. (2009). MLU and IPSyn measuring absolute complexity. Estonian Papers in Applied Linguistics (Eesti Rakenduslingvistika Ühingu aastaraamat), 5, 173185.Google Scholar
Nishimura, T., Mikami, A., Suzuki, J., et al. (2006). Descent of the hyoid in chimpanzees: Evolution of face flattening and speech. Journal of Human Evolution, 51, 244254. doi:10.1016/j.jhevol.2006.03.005Google Scholar
Nooteboom, S. G. (2007). Alphabetics: From phonemes to letters or from letters to phonemes? Written Language & Literacy, 10, 129143. doi:doi:10.1075/wll.10.2.05nooGoogle Scholar
Norman-Haignere, S., Kanwisher, N. G., & McDermott, J. H. (2015). Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88, 12811296. doi:10.1016/j.neuron.2015.11.035Google Scholar
Nozaradan, S., Schwartze, M., Obermeier, C., et al. (2017). Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex, 95, 156168. doi:10.1016/j.cortex.2017.08.015Google Scholar
Núñez, R. E. (2017). Is there really an evolved capacity for number? TRENDS in Cognitive Sciences, 21, 409424. doi:10.1016/j.tics.2017.03.005Google Scholar
O’Donnell, R. C. (1974). Syntactic differences between speech and writing. American Speech, 49, 102110.Google Scholar
O’Grady, W. (2008). The emergentist program. Lingua, 118, 447464. doi:10.1016/j.lingua.2006.12.001Google Scholar
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford, UK: Clarendon Press.Google Scholar
Obleser, J., Herrmann, B., & Henry, M. J. (2012). Neural oscillations in speech: Don’t be enslaved by the envelope. Frontiers in Human Neuroscience, 6. doi:10.3389/fnhum.2012.00250Google Scholar
Ohala, J. J. (1990). Respiratory activity in speech. In Hardcastle, W. J. & Marchal, A. (eds.), Proceedings of the NATO advanced study institute on speech production and speech modelling (pp. 2353). Dordrecht, NL: Kluwer Academic.Google Scholar
Ohala, J. J. (1994). The frequency code underlies the sound-symbolic use of voice pitch. In Hinton, L., Nichols, J., & Ohala, J. J. (eds.), Sound symbolism (pp. 325365). Cambridge, UK: Cambridge University Press.Google Scholar
Ohala, J. J. (1995). Speech technology: Historical antecedents. In Asher, R. E. (ed.), Concise history of the language sciences (pp. 416419). Amsterdam, NL: Pergamon.Google Scholar
Oller, D. K. (2000). The emergence of the speech capacity. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Oller, D. K., Dale, R., & Griebel, U. (2016). New frontiers in language evolution and development. Topics in Cognitvie Sciences, 8, 353360. doi:10.1111/tops.12204Google Scholar
Oller, D. K., & Eilers, R. E. (1988). The role of audition in infant babbling. Child Development, 59, 441449. doi:10.2307/1130323Google Scholar
Oller, D. K., & Griebel, U. (2014). On quantitative comparative research in communication and language evolution. Biological Theory, 9, 296308. doi:10.1007/s13752-014-0186-7Google Scholar
Oller, D. K., & Lynch, M. P. (1992). Infant vocalizations and innovations in infraphonology: Toward a broader theory of development and disorders. In Ferguson, C. A., Menn, L., & Stoel-Gammon, C. (eds.), Phonological development: Models, research, implications (pp. 509536). Timonium, MD: York Press.Google Scholar
Olson, D. R. (1993). How writing represents speech. Language & Communication, 13, 117. doi:10.1016/0271-5309(93)90017-HGoogle Scholar
Olson, D. R. (1996). Towards a psychology of literacy: On the relations between speech and writing. Cognition, 60, 83104. doi:10.1016/0010-0277(96)00705-6Google Scholar
Olson, D. R. (2017). History of writing, history of rationality. In Fernández-Götz, M. & Krausse, D. (eds.), Eurasia at the dawn of history: Urbanization and social change (pp. 4051). Cambridge, UK: Cambridge University Press.Google Scholar
Onderdelinden, L., van de Craats, I., & Kurvers, J. (2009). Word concept of illiterates and low-literates: Worlds apart? LOT Occasional Series, 15, 3548.Google Scholar
Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London, UK: Methuen.Google Scholar
Ortega, G. (2017). Iconicity and sign lexical acquisition: A review. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.01280Google Scholar
Osipova, D., Takashima, A., Oostenveld, R., et al. (2006). Theta and gamma oscillations predict encoding and retrieval of declarative memory. Journal of Neuroscience, 26, 75237531. doi:10.1523/JNEUROSCI.1948-06.2006Google Scholar
Ostry, D. J., Gribble, P. L., & Gracco, V. L. (1996). Coarticulation of jaw movements in speech production: Is context sensitivity in speech kinematics centrally planned? Journal of Neuroscience, 16, 15701579.Google Scholar
Otsuka, Y., Suzuki, K., Fujii, T., et al. (2005). Proper name anomia after left temporal subcortical hemorrhage. Cortex, 41, 3947. doi:10.1016/S0010-9452(08)70176-XGoogle Scholar
Oudeyer, P.-Y., & Kaplan, F. (2006). Discovering communication. Connection Science, 18, 189206. doi:10.1080/09540090600768567Google Scholar
Packard, J. L. (2000). The morphology of Chinese: A linguistic and cognitive approach. Cambridge, UK: Cambridge University Press.Google Scholar
Paivio, A. (2007). Mind and its evolution: A dual coding theoretical approach. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Palmeri, T. J., Goldinger, S. D., & Pisoni, D. B. (1993). Episodic encoding of voice attributes and recognition memory for spoken words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 309328. doi:10.1037/0278-7393.19.2.309Google Scholar
Papoušek, M., Bornstein, M. H., Nuzzo, C., et al. (1990). Infant responses to prototypical melodic contours in parental speech. Infant Behavior and Development, 13, 539545. doi:10.1016/0163-6383(90)90022-ZGoogle Scholar
Parham, D. F., Buder, E. H., Oller, D. K., et al. (2011). Syllable-related breathing in infants in the second year of life. Journal of Speech, Language, and Hearing Research, 54, 10391050. doi:10.1044/1092-4388(2010/09-0106)Google Scholar
Parisse, C. (2005). New perspectives on language development and the innateness of grammatical knowledge. Language Sciences, 27, 383401. doi:10.1016/j.langsci.2004.09.015Google Scholar
Park, H., Ince, R. A. A., Schyns, P. G., et al. (2015). Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners. Current Biology, 25, 16491653. doi:10.1016/j.cub.2015.04.049Google Scholar
Parker, M. D., & Brorson, K. (2005). A comparative study between mean length of utterance in morphemes (MLUm) and mean length of utterance in words (MLUw). First Language, 25, 365376. doi:10.1177/0142723705059114Google Scholar
Parkes, M. (1992). Pause and effect. London, UK: Routledge.Google Scholar
Parry, A. (1987). The making of Homeric verse: The collected papers of Milman Parry. Oxford, UK: Oxford University PressGoogle Scholar
Partanen, E., Kujala, T., Näätänen, R., et al. (2013). Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences, 110, 1514515150. doi:10.1073/pnas.1302159110Google Scholar
Parvizi, J. (2009). Corticocentric myopia: Old bias in new cognitive sciences. TRENDS in Cognitive Sciences, 13, 354359. doi:10.1016/j.tics.2009.04.008Google Scholar
Patel, A. D. (1993). Ancient India and the orality–literacy divide theory. In Scholes, R. J. (ed.), Literacy and language analysis (pp. 199208). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Patri, J.-F. (2018). Bayesian modeling of speech motor planning: Variability, multisensory goals and perceptuo-motor interactions (PhD). Grenoble, FR: Université Grenoble-Alpes.Google Scholar
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8. doi:10.1038/nrn2277Google Scholar
Payan, Y., & Perrier, P. (1997). Synthesis of V-V sequences with a 2D biomechanical tongue model controlled by the Equilibrium Point Hypothesis. Speech Communication, 22, 185205. doi:10.1016/S0167-6393(97)00019-8Google Scholar
Pedersen, J. (2012). The symbolic mind: Apes, symbols, and the evolution of language (PhD). Iowa State University, Ames, Iowa.Google Scholar
Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3. doi:10.3389/fpsyg.2012.00320Google Scholar
Peelle, J. E., Gross, J., & Davis, M. H. (2013). Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cerebral Cortex, 23, 13781387. doi:10.1093/cercor/bhs118Google Scholar
Peeva, M. G., Guenther, F. H., Tourville, J. A., et al. (2010). Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. NeuroImage, 50, 626638. doi:10.1016/j.neuroimage.2009.12.065Google Scholar
Peirce, C. S. (1998). What is a sign? In Project, P. E. (ed.), The essential Peirce: Selected philosophical writings, Vol. 2 (1893–1913) (pp. 410). Bloomington, IN: Indiana University Press.Google Scholar
Pena, M., Bonatti, L. L., Nespor, M., et al. (2002). Signal-driven computations in speech processing. Science, 298, 604607. doi:10.1126/science.1072901Google Scholar
Penfield, W., & Roberts, L. (1959). Speech and brain mechanisms. Princeton, NJ: Princeton University Press.Google Scholar
Penn, D. C., & Povinelli, D. J. (2007). On the lack of evidence that non-human animals possess anything remotely resembling a “theory of mind”. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 731744. doi:10.1098/rstb.2006.2023Google Scholar
Penner, M. R., & Mizumori, S. J. Y. (2012). Neural systems analysis of decision making during goal-directed navigation. Progress in Neurobiology, 96, 96135. doi:10.1016/j.pneurobio.2011.08.010Google Scholar
Pergnier, M. (1986). Le mot. Paris, FR: Presses Universitaires de France.Google Scholar
Perlman, M., Dale, R., & Lupyan, G. (2015). Iconicity can ground the creation of vocal symbols. Royal Society Open Science, 2, 150152. doi:10.1098/rsos.150152Google Scholar
Perrier, P. (2005). Control and representations in speech production. ZAS Papers in Lingustics, 40, 109132.Google Scholar
Perrier, P., Loevenbruck, H., & Payan, Y. (1996). Control of tongue movements in speech: The equilibrium point hypothesis perspective. Journal of Phonetics, 24, 5375. doi:10.1006/jpho.1996.0005Google Scholar
Perrier, P., Ostry, D. J., & Laboissière, R. (1996). The equilibrium point hypothesis and its application to speech motor control. Journal of Speech, Language, and Hearing Research, 39, 365378. doi:10.1044/jshr.3902.365Google Scholar
Perrier, P., Payan, Y., Zandipour, M., et al. (2003). Influences of tongue biomechanics on speech movements during the production of velar stop consonants: A modeling study. Journal of the Acoustical Society of America, 114, 15821599. doi:10.1121/1.1587737Google Scholar
Perruchet, P., Peereman, R., & Tyler, M. D. (2006). Do we need algebraic-like computations? A reply to Bonatti, Pena, Nespor, and Mehler (2006). Journal of Experimental Psychology: General, 135, 322326. doi:10.1037/0096-3445.135.2.322Google Scholar
Perruchet, P., & Rey, A. (2005). Does the mastery of center-embedded linguistic structures distinguish humans from nonhuman primates? Psychonomic Bulletin & Review, 12, 307313. doi:10.3758/bf03196377Google Scholar
Perruchet, P., Tyler, M. D., Galland, N., et al. (2004). Learning nonadjacent dependencies: No need for algebraic-like computations. Journal of Experimental Psychology: General, 133, 573583. doi:10.1037/0096-3445.133.4.573Google Scholar
Petersson, K. M., Reis, A., & Ingvar, M. (2001). Cognitive processing in literate and illiterate subjects: A review of some recent behavioral and functional neuroimaging data. Scandinavian Journal of Psychology, 42, 251267. doi:10.1111/1467-9450.00235Google Scholar
Pettinato, M., Tuomainen, O., Granlund, S., et al. (2016). Vowel space area in later childhood and adolescence: Effects of age, sex and ease of communication. Journal of Phonetics, 54, 114. doi:10.1016/j.wocn.2015.07.002Google Scholar
Piai, V., Anderson, K. L., Lin, J. J., et al. (2016). Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. Proceedings of the National Academy of Sciences, 113, 1136611371. doi:10.1073/pnas.1603312113Google Scholar
Piattelli-Palmarini, M., & Berwick, R. C. (2013). Rich languages from poor inputs. Oxford, UK: Oxford University Press.Google Scholar
Pietrandrea, P. (2002). Iconicity and arbitrariness in Italian sign language. Sign Language Studies, 2, 296321. doi:10.1353/sls.2002.0012Google Scholar
Pika, S., Liebal, K., Call, J., et al. (2005). The gestural communication of apes. Gesture, 5, 4156. doi:10.1075/gest.5.1.05pikGoogle Scholar
Pine, J. M., & Lieven, E. V. M. (1997). Slot and frame patterns and the development of the determiner category. Applied Psycholinguistics, 18, 123138. doi:10.1017/S0142716400009930Google Scholar
Pine, J. M., & Martindale, H. (1996). Syntactic categories in the speech of young children: The case of the determiner. Journal of Child Language, 23, 369395. doi:10.1017/S0305000900008849Google Scholar
Pinker, S. (1984). Language learnability and language development. Cambridge, MA: Harvard University Press.Google Scholar
Pinker, S. (1987). The bootstrapping problem in language acquisition. In MacWhinney, B. (ed.), Mechanisms of language acquisition (pp. 399441). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Pinker, S. (1994a). How could a child use verb syntax to learn verb semantics? Lingua, 92, 377410. doi:10.1016/0024-3841(94)90347-6Google Scholar
Pinker, S. (1994b). The language instinct. New York, NY: William Morrow.Google Scholar
Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95, 201236. doi:10.1016/j.cognition.2004.08.004Google Scholar
Poeppel, D. (2012). The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. Cognitive Neuropsychology, 29, 3455. doi:10.1080/02643294.2012.710600Google Scholar
Poeppel, D., & Embick, D. (2005). Defining the relation between linguistics and neuroscience. In Cutler, A. (ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 103118). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92, 112. doi:10.1016/j.cognition.2003.11.001Google Scholar
Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2007). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 10711086. doi:10.1098/rstb.2007.2160Google Scholar
Polivanov, V. E. (1936). Zur Frage der Betonungsfunktionen. Travaux du Cercle de Linguistique de Prague, 6, 7581.Google Scholar
Polka, L., Orena, A. J., Sundara, M., et al. (2017). Segmenting words from fluent speech during infancy: Challenges and opportunities in a bilingual context. Developmental Science, 20, 114. doi:10.1111/desc.12419Google Scholar
Pollick, A. S., & de Waal, F. B. M. (2007). Ape gestures and language evolution. Proceedings of the National Academy of Sciences, 104, 81848189. doi:10.1073/pnas.0702624104Google Scholar
Ponari, M., Norbury, C. F., & Vigliocco, G. (2017). How do children process abstract concepts? Evidence from a lexical decision task. Developmental Science, 10, 1011. doi:10.1111/desc.12549Google Scholar
Port, R. F. (2006). The graphical basis of phones and phonemes. In Munro, M. & Bohn, O.-S. (eds.), Second language speech learning: The language experience in speech production and perception (pp. 349365). Amsterdam, NL: John Benjamins.Google Scholar
Port, R. F. (2007). How are words stored in memory? Beyond phones and phonemes. New Ideas in Psychology, 25, 143170. doi:10.1016/j.newideapsych.2007.02.001Google Scholar
Port, R. F. (2010). Language as a social institution: Why phonemes and words do not live in the brain. Ecological Psychology, 22, 304326. doi:10.1080/10407413.2010.517122Google Scholar
Port, R. F., & Leary, A. P. (2005). Against formal phonology. Language Acquisition, 81, 927964. doi:10.1353/lan.2005.0195Google Scholar
Postal, P. M. (2003). Remarks on the foundations of linguistics. The Philosophical Forum, 34, 233252. doi:10.1111/1467-9191.00137Google Scholar
Postal, P. M. (2009). The incoherence of Chomsky’s “biolinguistic” ontology. Biolinguistics, 3, 104123.Google Scholar
Pouplier, M. (2007). Tongue kinematics during utterances elicited with the SLIP technique. Language and Speech, 50, 311341. doi:10.1177/00238309070500030201Google Scholar
Pouplier, M., & Goldstein, L. (2005). Asymmetries in the perception of speech production errors. Journal of Phonetics, 33, 4775. doi:10.1016/j.wocn.2004.04.001Google Scholar
Pouplier, M., & Goldstein, L. (2010). Intention in articulation: Articulatory timing in alternating consonant sequences and its implications for models of speech production. Language and Cognitive Processes, 25, 616649. doi:10.1080/01690960903395380Google Scholar
Pouplier, M., & Hardcastle, W. (2005). A re-evaluation of the nature of speech errors in normal and disordered speakers. Phonetica, 62, 227243. doi:10.1159/000090100Google Scholar
Powell, B. B. (2009). Writing: Theory and history of the technology of civilization. Hoboken, NJ: John Wiley.Google Scholar
Prakash, P., Rekha, D., Nigam, R., et al. (1993). Phonological awareness, orthography, and literacy. In Scholes, R. J. (ed.), Literacy and language analysis (pp. 5570). New York, NY: Lawrence Erlbaum.Google Scholar
Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23, R764R773. doi:10.1016/j.cub.2013.05.041Google Scholar
Price, T., Wadewitz, P., Cheney, D., et al. (2015). Vervets revisited: A quantitative analysis of alarm call structure and context specificity. Scientific Reports, 5, 13220. doi:10.1038/srep13220Google Scholar
Provine, R. R. (2005). Walkie-talkie evolution: Bipedalism and vocal production. Behavioral and Brain Sciences, 27, 520521. doi:10.1017/S0140525X04410115Google Scholar
Pujol, J., Soriano-Mas, C., Ortiz, H., et al. (2006). Myelination of language-related areas in the developing brain. Neurology, 66, 339343. doi:10.1212/01.wnl.0000201049.66073.8dGoogle Scholar
Pulvermüller, F. (1999). Words in the brain’s language. Behavioral and Brain Sciences, 22, 253279. doi:10.1017/S0140525X9900182XGoogle Scholar
Pulvermüller, F. (2013). How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. TRENDS in Cognitive Sciences, 17, 458470. doi:10.1016/j.tics.2013.06.004Google Scholar
Radford, K., Taylor, R. C., Hall, J. G., et al. (2019). Aerodigestive and communicative behaviors in anencephalic and hydranencephalic infants. Birth Defects Research, 111, 4152. doi:10.1002/bdr2.1424Google Scholar
Ramsdell, H. L., Oller, D. K., & Ethington, C. A. (2007). Predicting phonetic transcription agreement: Insights from research in infant vocalizations. Clinical Linguistics & Phonetics, 21, 793831. doi:10.1080/02699200701547869Google Scholar
Read, C., Yun-Fei, Z., Hong-Yin, N., et al. (1986). The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition, 24, 3144. doi:10.1016/0010-0277(86)90003-XGoogle Scholar
Redcay, E., Dodell-Feder, D., Pearrow, M. J., et al. (2010). Live face-to-face interaction during fMRI: A new tool for social cognitive neuroscience. NeuroImage, 50, 16391647. doi:10.1016/j.neuroimage.2010.01.052Google Scholar
Reddy, P. P., & Koda, K. (2013). Orthographic constraints on phonological awareness in biliteracy development. Writing Systems Research, 5, 110130. doi:10.1080/17586801.2012.748639Google Scholar
Reig, R., & Silberberg, G. (2014). Multisensory integration in the mouse striatum. Neuron, 83, 12001212. doi:10.1016/j.neuron.2014.07.033Google Scholar
Reilly, J., Peelle, J. E., Garcia, A., et al. (2016). Linking somatic and symbolic representation in semantic memory: The dynamic multilevel reactivation framework. Psychonomic Bulletin & Review, 23, 10021014. doi:10.3758/s13423-015-0824-5Google Scholar
Reimchen, M., & Soderstrom, M. (2016). Do questions get infants talking? Infant vocal responses to questions and declaratives in maternal speech. Infant and Child Development, 26, 116. doi:10.1002/icd.1985Google Scholar
Reis, A., & Castro-Caldas, A. (1997). Illiteracy: A cause for biased cognitive development. Journal of the International Neuropsychological Society, 3, 444450. doi:10.1017/S135561779700444XGoogle Scholar
Reiss, C. (2017). Substance free phonology. In Hannahs, S. J. & Bosch, A. (eds.), The Routledge handbook of phonological theory (pp. 425452). London, UK: Routledge.Google Scholar
Rice, M. L., Redmond, S. M., & Hoffman, L. (2006). Mean length of utterance in children with specific language impairment and in younger control children shows concurrent validity and stable and parallel growth trajectories. Journal of Speech, Language, and Hearing Research, 49, 793808. doi:10.1044/1092-4388(2006/056)Google Scholar
Ridouane, R. (2008). Syllables without vowels: Phonetic and phonological evidence from Tashlhiyt Berber. Phonology, 25, 321359.Google Scholar
Rimzhim, A., Katz, L., & Fowler, C. A. (2014). Brāhmī-derived orthographies are typologically Āksharik but functionally predominantly alphabetic. Writing Systems Research, 6, 4153. doi:10.1080/17586801.2013.855618Google Scholar
Rinne, T., Balk, M. H., Koistinen, S., et al. (2008). Auditory selective attention modulates activation of human inferior colliculus. Journal of Neurophysiology, 100, 33233327. doi:10.1152/jn.90607.2008Google Scholar
Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21, 188194. doi:10.1016/S0166-2236(98)01260-0Google Scholar
Roberts, E. W. (1975). Speech errors as evidence for the reality of phonological units. Lingua, 35, 263–296. doi:10.1016/0024-3841(75)90061-3Google Scholar
Rochet-Capellan, A., & Fuchs, S. (2014). Take a breath and take the turn: How breathing meets turns in spontaneous dialogue. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130399-. doi:10.1098/rstb.2013.0399Google Scholar
Rochette, C. (1973). Les groupes de consonnes en français: Étude de l’enchaînement articulatoire à l’aide de la radiocinématographie. Québec, QC: Presses de l’Université Laval.Google Scholar
Rodriguez, E., George, N., Lachaux, J. P., et al. (1999). Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 397, 430433. doi:10.1038/17120Google Scholar
Rogers, R. D., Sahakian, B. J., Hodges, J. R., et al. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain, 121, 815842. doi:10.1093/brain/121.5.815Google Scholar
Roitman, A. V., Pasalar, S., Johnson, M. T. V., et al. (2005). Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. Journal of Neuroscience, 25, 92449257. doi:10.1523/JNEUROSCI.1886-05.2005Google Scholar
Rollins, P. R., Snow, C. E., & Willett, J. B. (1996). Predictors of MLU: Semantic and morphological developments. First Language, 16, 243259. doi:10.1177/014272379601604705Google Scholar
Rom, A., & Leonard, L. (1990). Interpreting deficits in grammatical morphology in specifically language-impaired children: Preliminary evidence from Hebrew. Clinical Linguistics & Phonetics, 4, 93105. doi:10.3109/02699209008985474Google Scholar
Ronconi, L., Casartelli, L., Carna, S., et al. (2017). When one is enough: Impaired multisensory integration in cerebellar agenesis. Cereb Cortex, 27, 20412051. doi:10.1093/cercor/bhw049Google Scholar
Rondal, J. A., & Comblain, A. (1996). Language in adults with Down syndrome. Down Syndrome Research and Practice, 4, 314. doi:10.3104/reviews.58Google Scholar
Rosemann, S., Brunner, F., Kastrup, A., et al. (2017). Musical, visual and cognitive deficits after middle cerebral artery infarction. eNeurologicalSci, 6, 2532. doi:10.1016/j.ensci.2016.11.006Google Scholar
Ross, E. D. (2010). Cerebral localization of functions and the neurology of language: Fact versus fiction or is it something else? The Neuroscientist, 16, 222243. doi:10.1177/1073858409349899Google Scholar
Rousselot, J.-P. (1897). Principes de phonétique expérimentale. Paris, FR: H. Welter.Google Scholar
Roy, A. C., Craighero, L., Fabbri-Destro, M., et al. (2008). Phonological and lexical motor facilitation during speech listening: A transcranial magnetic stimulation study. Journal of Physiology-Paris, 102, 101105. doi:10.1016/j.jphysparis.2008.03.006Google Scholar
Roy, A. C., Svensson, F.-P., Mazeh, A., et al. (2017). Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Structure and Function, 222, 28192830. doi:10.1007/s00429-017-1374-6Google Scholar
Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. TRENDS in Cognitive Sciences, 16, 147156. doi:10.1016/j.tics.2012.01.005Google Scholar
Rubin, P., Baer, T., & Mermelstein, P. (1981). An articulatory synthesizer for perceptual research. The Journal of the Acoustical Society of America, 70, 321328.Google Scholar
Rueschemeyer, S.-A., & Gaskell, M. G. (eds.). (2018). The Oxford handbook of psycholinguistics Oxford, UK: Oxford University Press.Google Scholar
Rueschemeyer, S.-A., Pfeiffer, C., & Bekkering, H. (2010). Body schematics: On the role of the body schema in embodied lexical–semantic representations. Neuropsychologia, 48, 774781. doi:10.1016/j.neuropsychologia.2009.09.019Google Scholar
Russell, N. K., & Stathopoulos, E. (1988). Lung volume changes in children and adults during speech production. Journal of Speech and Hearing Research, 31, 146155. doi:10.1044/jshr.3102.146Google Scholar
Saenger, P. (1997). Space between words: The origins of silent reading. Standford, CA: Stanford University Press.Google Scholar
Saffran, J. R. (2001a). The use of predictive dependencies in language learning. Journal of Memory and Language, 44, 493515. doi:10.1006/jmla.2000.2759Google Scholar
Saffran, J. R. (2001b). Words in a sea of sounds: The output of infant statistical learning. Cognition, 81, 149169. doi:10.1016/S0010-0277(01)00132-9Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–1928. doi:10.1126/science.274.5294.1926Google Scholar
Saffran, J. R., Johnson, E. K., Aslin, R. N., et al. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 2752. doi:10.1016/S0010-0277(98)00075-4Google Scholar
Saffran, J. R., Werker, J. F., & Werner, L. A. (2007). The infant’s auditory world: Hearing, speech, and the beginnings of language. In Siegler, R. & Kuhn, D. (eds.), Handbook of child psychology (pp. 58108). New York, NY: Wiley.Google Scholar
Saito, A., & Inoue, T. (2017). The frame constraint on experimentally elicited speech errors in Japanese. Journal of Psycholinguistic Research, 46, 583596. doi:10.1007/s10936-016-9454-yGoogle Scholar
Sakata, S., & Harris, K. D. (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64, 404418. doi:10.1016/j.neuron.2009.09.020Google Scholar
Salomon, R. G. (1996). Brahmi and Kharoshthi. In Daniels, P. T. (ed.), The world’s writing systems (pp. 373383). Oxford, UK: Oxford University Press.Google Scholar
Salomon, R. G. (2000). Typological observations on the Indic script group and its relationship to other alphasyllabaries. Studies in the Linguistic Sciences, 30, 87103.Google Scholar
Saltzman, E., Löfqvist, A., & Mitra, S. (2000). “Glue” and “clocks”: Intergestural cohesion and global timing. In Broe, M. B. & Pierrehumbert, J. B. (eds.), Papers in laboratory phonology V: Acquisition and the lexicon (pp. 88101). Cambridge, UK: Cambridge University Press.Google Scholar
Saltzman, E. L., & Kelso, J. A. S. (1987). Skilled actions: A task-dynamic approach. Psychological Review, 94, 84106. doi:10.1037/0033-295X.94.1.84Google Scholar
Saltzman, E. L., & Munhall, K. G. (1989). A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1, 333382. doi:10.1207/s15326969eco0104_2Google Scholar
Sampson, G. (1985). Writing systems. Stanford, CA: Stanford University Press.Google Scholar
Sampson, G. (2002). Exploring the richness of the stimulus. The Linguistic Review, 19, 73104. doi:10.1515/tlir.19.1-2.73Google Scholar
Sandler, W. (2012). Dedicated gestures and the emergence of sign language. Gesture, 12, 265307. doi:10.1075/gest.12.3.01sanGoogle Scholar
Sandler, W. (2013). Vive la différence: Sign language and spoken language in language evolution. Language and Cognition, 5, 189203. doi:10.1515/langcog-2013-0013Google Scholar
Sandler, W. (2017). The challenge of sign language phonology. Annual Review of Linguistics, 7, 4363. doi:10.1146/annurev-linguistics-011516-034122Google Scholar
Sandler, W., Aronoff, M., Padden, C., et al. (2014). Language emergence: Al-Sayyid Bedouin sign language. In Enfield, N. J., Kockelman, P., & Sidnell, J. (eds.), The Cambridge handbook of linguistic anthropology (pp. 246278). Cambridge, UK: Cambridge University Press.Google Scholar
Sanguineti, V., Laboissière, R., & Ostry, D. J. (1998). A dynamic biomechanical model for neural control of speech production. Journal of the Acoustical Society of America, 103, 16151627. doi:10.1121/1.421296Google Scholar
Sapir, E. (1921). Language. New York, NY: Harcourt, Brace.Google Scholar
Sapir, E. (1933). The psychological reality of phonemes. Journal de Psychologie Normale et Pathologique, 30, 247265.Google Scholar
Sasaki, S., Isa, T., Pettersson, L.-G., et al. (2004). Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. Journal of Neurophysiology, 92, 31423147. doi:10.1152/jn.00342.2004Google Scholar
Sato, M., Schwartz, J.-L., & Perrier, P. (2014). Phonemic auditory and somatosensory goals in speech production. Language, Cognition and Neuroscience, 29, 4143. doi:10.1080/01690965.2013.849811Google Scholar
Saussure, F. d. (1916/1966). Course in general linguistics. New York, NY: McGraw-Hill.Google Scholar
Savage-Rumbaugh, E. S., McDonald, K., Sevcik, R. A., et al. (1986). Spontaneous symbol acquisition and communicative use by pygmy chimpanzees (Pan paniscus). Journal of Experimental Psychology: General, 115, 211235. doi:10.1037/0096-3445.115.3.211Google Scholar
Savage-Rumbaugh, E. S., Murphy, J., Sevcik, R. A., et al. (1993). Language comprehension in ape and child. Monographs of the Society for Research in Child Development, 58, 1252. doi:10.2307/1166068Google Scholar
Savage-Rumbaugh, E. S., & Rumbaugh, D. M. (1978). Symbolization, language, and chimpanzees: A theoretical reevaluation based on initial language acquisition processes in four young Pan troglodytes. Brain and Language, 6, 265300. doi:10.1016/0093-934X(78)90063-9Google Scholar
Savage-Rumbaugh, E. S., Shanker, G. S., & Taylor, J. T. (2001). Apes, language, and the human mind. New York, NY: Oxford University Press.Google Scholar
Scarborough, H., Wyckoff, J., & Davidson, R. (1986). A reconsideration of the relation between age and mean utterance length. Journal of Speech and Hearing Research, 29, 394399. doi:10.1044/jshr.2903.394Google Scholar
Scarborough, H. S., Rescorla, L., Tager-Flusberg, H., et al. (1991). The relation of utterance length to grammatical complexity in normal and language-disorders groups. Applied Psycholinguistics, 12, 2345.Google Scholar
Schack, B., & Weiss, S. (2005). Quantification of phase synchronization phenomena and their importance for verbal memory processes. Biological Cybernetics, 92, 275287. doi:10.1007/s00422-005-0555-1Google Scholar
Schmahmann, J. D. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16, 367378. doi:10.1176/jnp.16.3.367Google Scholar
Schmidt, R. A. (1988). Motor and action perspectives on motor behaviour. In Meijer, O. G. & Roth, K. (eds.), Complex movement behaviour: “The” motor-action controversy (Vol. 50, pp. 344). Amsterdam, NL: Elsevier.Google Scholar
Schmidt, R. A., & Lee, T. (2014). Motor learning and performance: From principles to application. Champaign, IL: Human Kinetics.Google Scholar
Scholes, R. J. (1995). On the orthographic basis of morphology. In Scholes, R. J. (ed.), Literacy and language analysis (pp. 7395). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Scholes, R. J. (1998). The case against phonemic awareness. Journal of Research in Reading, 21, 177188. doi:10.1111/1467-9817.00054Google Scholar
Schreuder, R., & Bon, W. H. J. (1989). Phonemic analysis: Effects of word properties. Journal of Research in Reading, 12, 5978. doi:10.1111/j.1467-9817.1989.tb00303.xGoogle Scholar
Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32, 918. doi:10.1016/j.tins.2008.09.012Google Scholar
Schroeder, C. E., Lakatos, P., Kajikawa, Y., et al. (2008). Neuronal oscillations and visual amplification of speech. TRENDS in Cognitive Sciences, 12, 106113. doi:10.1016/j.tics.2008.01.002Google Scholar
Schultz, W., & Romo, R. (1992). Role of primate basal ganglia and frontal cortex in the internal generation of movements. Experimental Brain Research, 91, 363384. doi:10.1007/bf00227834Google Scholar
Schwanenflugel, P. J., & Akin, C. E. (1994). Developmental trends in lexical decisions for abstract and concrete words. Reading Research Quarterly, 29, 251264. doi:10.2307/747876Google Scholar
Schwanenflugel, P. J., Stahl, S. A., & McFalls, E. L. (1997). Partial word knowledge and vocabulary growth during reading comprehension. Journal of Literacy Research, 29, 531553. doi:10.1080/10862969709547973Google Scholar
Schwartze, M., & Kotz, S. A. (2016). Contributions of cerebellar event-based temporal processing and preparatory function to speech perception. Brain and Language, 161, 2832. doi:10.1016/j.bandl.2015.08.005Google Scholar
Sciote, J. J., Morris, T. J., Horton, M. J., et al. (2002). Unloaded shortening velocity and myosin heavy chain variations in human laryngeal muscle fibers. Annals of Otology, Rhinology & Laryngology, 111, 120127. doi:10.1177/000348940211100203Google Scholar
Scott, A. D., Wylezinska, M., Birch, M. J., et al. (2014). Speech MRI: Morphology and function. Physica Medica, 30, 604618. doi:10.1016/j.ejmp.2014.05.001Google Scholar
Scripture, E. W. (1902). Elements of experimental phonetics. New York, NY: Charles Scribner.Google Scholar
Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge, UK: Cambridge University Press.Google Scholar
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417424.Google Scholar
Seikel, J. A., King, D. W., & Drumwright, D. G. (1997). Anatomy and physiology for speech and language. San Diego, CA: Singular.Google Scholar
Selkirk, E. O. (1981). On the nature of phonological representation. In Myers, T., Laver, J., & Anderson, J. (eds.), The cognitive representation of speech (pp. 379388). Amsterdam, NL: North-Holland.Google Scholar
Selkirk, E. O. (1984). Phonology and syntax: The relation between sound and structure. Cambridge, MA: MIT Press.Google Scholar
Selkirk, E. O. (1986). On derived domains in sentence phonology. Phonology Yearbook, 3, 371405. doi:10.1017/S0952675700000695Google Scholar
Selkirk, E. O. (1996). The prosodic structure of function words. In Morgan, J. L. & Demuth, K. (eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition (pp. 187214). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Selkirk, E. O. (2000). The interaction of constraints on prosodic phrasing. In Horne, M. (ed.), Prosody, theory and experiment: Studies presented to Gösta Bruce (pp. 231262). Dordrecht, NL: Kluwer Academic.Google Scholar
Selkirk, E. O. (2011). The syntax–phonology interface. In Goldsmith, J., Riggle, J., & Yu, A. C. L. (eds.), The handbook of phonological theory (pp. 435531). Malden, MA: Wiley-Blackwell.Google Scholar
Sereno, M. I. (2014). Origin of symbol-using systems: Speech, but not sign, without the semantic urge. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130303. doi:10.1098/rstb.2013.0303Google Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28, 10701094. doi:10.1016/S0003-3472(80)80097-2Google Scholar
Shaffer, L. H. (1982). Rhythm and timing in skill. Psychological Review, 89, 109122. doi:10.1037/0033-295X.89.2.109Google Scholar
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.Google Scholar
Share, D. L. (2014). Alphabetism in reading science. Frontiers in Psychology, 5. doi:10.3389/fpsyg.2014.00752Google Scholar
Share, D. L., & Daniels, P. T. (2016). Aksharas, alphasyllabaries, abugidas, alphabets, and orthographic depth: Reflections on Rimzhim, Katz and Fowler (2014). Writing Systems Research, 8, 1731. doi:10.1080/17586801.2015.1016395Google Scholar
Shattuck-Hufnagel, S. (1979). Speech errors as evidence for a serial-order mechanism in sentence production. In Cooper, W. E. & Walker, C., T. (eds.), Sentence processing: Psycholinguistic studies presented to Merrill Garrett (pp. 295342). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Shattuck-Hufnagel, S. (1983). Sublexical units and suprasegmental structure in speech production planning. In MacNeilage, P. F. (ed.), The production of speech (pp. 109136). New York, NY: Springer.Google Scholar
Shattuck-Hufnagel, S. (1992). The role of word structure in segmental serial ordering. Cognition, 42, 213259. doi:10.1016/0010-0277(92)90044-IGoogle Scholar
Shebani, Z., & Pulvermüller, F. (2013). Moving the hands and feet specifically impairs working memory for arm- and leg-related action words. Cortex, 49, 222231. doi:10.1016/j.cortex.2011.10.005Google Scholar
Sherrington, C. S. (1909). A mammalian spinal preparation. The Journal of Physiology, 38, 375383. doi:10.1113/jphysiol.1909.sp001311Google Scholar
Sherzer, J. (1982). Play languages, with a note on ritual languages. In Obler, L. & Menn, L., Exceptional language and linguistics (pp. 175199). New York, NY: Academic Press.Google Scholar
Shewmon, D. A. (1988). Anencephaly: Selected medical aspects. Hastings Center Report, 18, 1119. doi:10.2307/3562217Google Scholar
Shiller, D. M., Sato, M., Gracco, V. L., et al. (2009). Perceptual recalibration of speech sounds following speech motor learning. The Journal of the Acoustical Society of America, 125, 11031113. doi:10.1121/1.3058638Google Scholar
Shiroma, A., Nishimura, M., Nagamine, H., et al. (2016). Cerebellar contribution to pattern separation of human hippocampal memory circuits. The Cerebellum, 15, 645662. doi:10.1007/s12311-015-0726-0Google Scholar
Shohamy, D., Myers, C. E., Kalanithi, J., et al. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience & Biobehavioral Reviews, 32, 219236. doi:10.1016/j.neubiorev.2007.07.008Google Scholar
Shukla, M., Nespor, M., & Mehler, J. (2007). An interaction between prosody and statistics in the segmentation of fluent speech. Cognitive Psychology, 54, 132. doi:10.1016/j.cogpsych.2006.04.002Google Scholar
Simmons, W. K., & Barsalou, L. W. (2003). The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20, 451486. doi:10.1080/02643290342000032Google Scholar
Simonyan, K. (2014). The laryngeal motor cortex: Its organization and connectivity. Current Opinion in Neurobiology, 28, 1521. doi:10.1016/j.conb.2014.05.006Google Scholar
Simonyan, K., & Horwitz, B. (2011). Laryngeal motor cortex and control of speech in humans. The Neuroscientist, 17, 197208. doi:10.1177/1073858410386727Google Scholar
Siri, S., Tettamanti, M., Cappa, S. F., et al. (2008). The neural substrate of naming events: effects of processing demands but not of grammatical class. Cerebral Cortex, 18, 171177. doi:10.1093/cercor/bhm043Google Scholar
Skinner, B. F. (1957). Verbal behavior. New York, NY: Appleton-Century-Crofts.Google Scholar
Skipper, J. I. (2015). The NOLB model: A model of the natural organization of language and the brain. In Willems, R. M. (ed.), Cognitive neuroscience of natural language use (pp. 101134). Cambridge, UK: Cambridge University Press.Google Scholar
Skipper, J. I., Devlin, J. T., & Lametti, D. R. (2017). The hearing ear is always found close to the speaking tongue: Review of the role of the motor system in speech perception. Brain and Language, 164, 77105. doi:10.1016/j.bandl.2016.10.004Google Scholar
Skoe, E., & Kraus, N. (2013). Musical training heightens auditory brainstem function during sensitive periods in development. Frontiers in Psychology, 4. doi:10.3389/fpsyg.2013.00622Google Scholar
Smith, A., & Zelaznik, H. N. (2004). Development of functional synergies for speech motor coordination in childhood and adolescence. Developmental Psychobiology, 45, 2233. doi:10.1002/dev.20009Google Scholar
Smith, B. L. (1978). Temporal aspects of English speech production: A developmental perspective. Journal of Phonetics, 6, 3767. doi:10.1016/S0095-4470(19)31084-8Google Scholar
Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174215. doi:10.1037/0278-7393.6.2.174Google Scholar
Soderstrom, M., Seidl, A., Nelson Kemler, D. G., et al. (2003). The prosodic bootstrapping of phrases: Evidence from prelinguistic infants. Journal of Memory and Language, 49, 249267. doi:10.1016/S0749-596X(03)00024-XGoogle Scholar
Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. TRENDS in Cognitive Sciences, 21, 313332. doi:10.1016/j.tics.2017.02.005Google Scholar
Sommer, M. A. (2003). The role of the thalamus in motor control. Current Opinion in Neurobiology, 13, 663670. doi:10.1016/j.conb.2003.10.014Google Scholar
Spagnoletti, C., Morais, J., Alegria, J., et al. (1989). Metaphonological abilities of Japanese children. Reading and Writing, 1, 221244. doi:10.1007/BF00377644Google Scholar
Speed, L. J., Vinson, D. P., & Vigliocco, G. (2015). Representing meaning. In Dabrowska, E. & Divjak, D. (eds.), Handbook of cognitive linguistics (pp. 190211). London, UK: Mouton.Google Scholar
Sproat, R. (2006). Brahmi-derived scripts, script layout, and phonological awareness. Written Language and Literacy, 9, 4566. doi:10.1075/wll.9.1.05sprGoogle Scholar
Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 93, 1351513522. doi:10.1073/pnas.93.24.13515Google Scholar
Stahl, S. A., & Murray, B. A. (1994). Defining phonological awareness and its relationship to early reading. Journal of Educational Psychology, 86, 221. doi:10.1037/0022-0663.86.2.221Google Scholar
Stål, P., Marklund, S., Thornell, L.-E., et al. (2003). Fibre composition of human intrinsic tongue muscles. Cells Tissues Organs, 173, 147161. doi:10.1159/000069470Google Scholar
Staudigl, T., & Hanslmayr, S. (2013). Theta oscillations at encoding mediate the context-dependent nature of human episodic memory. Current Biology, 23, 11011106. doi:10.1016/j.cub.2013.04.074Google Scholar
Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.Google Scholar
Stein, B. E., & Rowland, B. A. (2011). Organization and plasticity in multisensory integration: Early and late experience affects its governing principles. Progress in Brain Research, 191, 145163. doi:10.1016/B978-0-444-53752-2.00007-2Google Scholar
Steinberg, J. C. (1934). Application of sound measuring instruments to the study of phonetic sounds. Journal of the Acoustical Society of America, 6, 1624. doi:10.1121/1.1915684Google Scholar
Steinhauer, K. (2003). Electrophysiological correlates of prosody and punctuation. Brain and Language, 86, 142164. doi:10.1016/S0093-934X(02)00542-4Google Scholar
Steinhauer, K., & Friederici, A. D. (2001). Prosodic boundaries, comma rules, and brain responses: The closure positive shift in ERP’s as a universal marker for prosodic phrasing in listeners and readers. Journal of Psycholinguistic Research, 30, 267295. doi:10.1023/A:1010443001646Google Scholar
Stemberger, J. P. (1983). Speech errors and theoretical phonology: A review. Bloomingtion, IN: Indiana University Linguistics Club.Google Scholar
Stemberger, J. P. (1989). Speech errors in early child language production. Journal of Memory and Language, 28, 164188. doi:10.1016/0749-596X(89)90042-9Google Scholar
Steriade, M., Gloor, P., Llinás, R. R., et al. (1990). Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology, 76, 481508. doi:10.1016/0013-4694(90)90001-ZGoogle Scholar
Stetson, R. H. (1928/1951). Motor phonetics: A study of speech movements in action (2nd ed.). Amsterdam, NL: North-Holland.Google Scholar
Stigler, J. W., Lee, S.-Y., & Stevenson, H. W. (1986). Digit memory in Chinese and English: Evidence for a temporally limited store. Cognition, 23, 120. doi:10.1016/0010-0277(86)90051-XGoogle Scholar
Stjernfelt, F. (2012). The evolution of semiotic self-control. In Schilhab, T., Stjernfelt, F., & Deacon, T. W. (eds.), The symbolic species evolved (pp. 3963). Dordrecht, NL: Springer.Google Scholar
Straka, G. (1965). Album phonétique. Québec, QC: Presses de l’Université Laval.Google Scholar
Studdert-Kennedy, M. (1987). The phoneme as a perceptuomotor structure. Haskins Laboratories Report on Speech Research, SR- 91, 4557.Google Scholar
Studdert-Kennedy, M. (1998). Introduction: The emergence of phonology. In Hurford, J. R., Studdert-Kennedy, M., & Knight, C. (eds.), Approaches to the evolution of language: Social and cognitive bases (pp. 169176). Cambridge, UK: Cambridge University Press.Google Scholar
Studdert-Kennedy, M. (2000). Imitation and the emergence of segments. Phonetica, 57, 275283. doi:10.1159/000028480Google Scholar
Studdert-Kennedy, M. (2005). How did language go discrete? In Tallerman, M. & Pascal, H. H. (eds.), Language origins: Perspectives on evolution (pp. 4867). Oxford, UK: Oxford University Press.Google Scholar
Sussman, H. M. (1984). A neuronal model for syllable representation. Brain and Language, 22, 167177. doi:10.1016/0093-934X(84)90087-7Google Scholar
Sutton, D., Larson, C., Taylor, E. M., et al. (1973). Vocalization in rhesus monkeys: Conditionability. Brain Research, 52, 225231. doi:10.1016/0006-8993(73)90660-4Google Scholar
Sweet, H. (1877). A handbook of phonetics: Including a popular exposition of the principles of spelling reform. Oxford, UK: Clarendon Press.Google Scholar
Taub, S. F. (2001). Language from the body: Iconicity and metaphor in American Sign Language. Cambridge, UK: Cambrige University Press.Google Scholar
Tavakoli, M., Jalilevand, N., Kamali, M., et al. (2015). Language sampling for children with and without cochlear implant: MLU, NDW, and NTW. International Journal of Pediatric Otorhinolaryngology, 79, 21912195. doi:10.1016/j.ijporl.2015.10.001Google Scholar
Taylor, I. (1988). Psychology of literacy: East and west. In de Kerckhove, D. & Lumsden, C. J. (eds.), The alphabet and the brain: The lateralization of writing (pp. 202233). Berlin, DE: Springer.Google Scholar
Taylor, J. A., & Ivry, R. B. (2014). Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning. In Ramnani, N. (ed.), Progress in brain research (Vol. 210, pp. 217253). Amsterdam, NL: Elsevier.Google Scholar
Taylor, J. R. (2007). Cognitive linguistics and autonomous linguistics. In Geeraerts, D., Cuyckens, H., & Taylor, J. R. (eds.), The Oxford handbook of cognitive linguistics (pp. 566588). Oxford, UK: Oxford University Press.Google Scholar
Taylor, T. (1997). Theorizing language analysis, normativity, rhetoric, history. Amsterdam, NL: Pergamon.Google Scholar
Temel, Y., Blokland, A., Steinbusch, H. W. M., et al. (2005). The functional role of the subthalamic nucleus in cognitive and limbic circuits. Progress in Neurobiology, 76, 393413. doi:10.1016/j.pneurobio.2005.09.005Google Scholar
Ten Oever, S., Hausfeld, L., Correia, J. M., et al. (2016). A 7T fMRI study investigating the influence of oscillatory phase on syllable representations. NeuroImage, 141, 19. doi:10.1016/j.neuroimage.2016.07.011Google Scholar
Ten Oever, S., & Sack, A. T. (2015). Oscillatory phase shapes syllable perception. Proceedings of the National Academy of Sciences, 112, 1583315837. doi:10.1073/pnas.1517519112Google Scholar
Terrace, H. S. (2001). Chunking and serially organized behavior in pigeons,monkeys and humans. In Cook, R. G. (ed.), Avian visual cognition. [Online]. doi:pigeon.psy.tufts.edu/avc/terrace/Google Scholar
Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress and statistical cues to word boundaries by 7- to 9-month-old infants. Developmental Psychology, 39, 706716. doi:10.1037/0012-1649.39.4.706Google Scholar
Thom, S. A., Hoit, J. D., Hixon, T. J., et al. (2006). Velopharyngeal function during vocalization in infants. Cleft Palate–Craniofacial Journal, 43, 539546. doi:10.1597/05-113Google Scholar
Thompson, R. L., Vinson, D. P., Woll, B., et al. (2012). The road to language learning is iconic: Evidence from British sign language. Psychological Science, 23, 14431448. doi:10.1177/0956797612459763Google Scholar
Thomson, J. M., Fryer, B., Maltby, J., et al. (2006). Auditory and motor rhythm awareness in adults with dyslexia. Journal of Research in Reading, 29, 334348. doi:10.1111/j.1467-9817.2006.00312.xGoogle Scholar
Tierney, A., & Kraus, N. (2014). Auditory-motor entrainment and phonological skills: Precise auditory timing hypothesis (PATH). Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00949Google Scholar
Timmann, D., Dimitrova, A., Hein-Kropp, C., et al. (2003). Cerebellar agenesis: Clinical, neuropsychological and MR findings. Neurocase, 9, 402413. doi:10.1076/neur.9.5.402.16555Google Scholar
Tomasello, M. (1990). Cultural transmission in the tool use and communicatory signaling of chimpanzees? In Parker, S. T. & Gibson, K. R. (eds.), Language and intelligence in monkeys and apes: Comparative developmental perspectives (pp. 274311.). New York, NY: Cambridge University Press.Google Scholar
Tomasello, M. (1992). First verbs: A case study of early grammatical development. Cambridge, UK: Cambridge University Press.Google Scholar
Tomasello, M. (1996). Do apes ape? In Heyes, C. M. & Galef, B. G. (eds.), Social learning in animals: The roots of culture (pp. 319346). San Diego, CA: Academic Press.Google Scholar
Tomasello, M. (2000a). Do young children have adult syntactic competence? Cognition, 74, 209253. doi:10.1016/S0010-0277(99)00069-4Google Scholar
Tomasello, M. (2000b). The item-based nature of children’s early syntactic development. TRENDS in Cognitive Sciences, 4, 156163. doi:10.1016/S1364-6613(00)01462-5Google Scholar
Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M., & Akhtar, N. (1995). Two-year-olds use pragmatic cues to differentiate reference to objects and actions. Cognitive Development, 10, 201224. doi:10.1016/0885-2014(95)90009-8Google Scholar
Tomasello, M., & Bates, E. (eds.). (2001). Language development: The essential readings. Malden, MA: Blackwell.Google Scholar
Tomasello, M., & Zuberbühler, K. (2002). Primate vocal and gestural communication. In Bekoff, M., Allen, C., & Burghardt, G. M. (eds.), The cognitive animal: Empirical and theoretical perspectives on animal cognition (pp. 293–229). Cambridge, MA: MIT Press.Google Scholar
Topalidou, M., Kase, D., Boraud, T., et al. (2016). Dissociation of reinforcement and Hebbian learning induces covert acquisition of value in the basal ganglia. bioRxiv. doi:10.1101/060236Google Scholar
Toscano, J. C., & McMurray, B. (2015). The time-course of speaking rate compensation: Effects of sentential rate and vowel length on voicing judgments. Language, Cognition and Neuroscience, 30, 529543. doi:10.1080/23273798.2014.946427Google Scholar
Treiman, R., & Kessler, B. (1995). In defense of an onset-rime syllable structure for English. Language and Speech, 38, 127142. doi:10.1177/002383099503800201Google Scholar
Tremblay, P.-L., Bedard, M.-A., Langlois, D., et al. (2010). Movement chunking during sequence learning is a dopamine-dependant process: A study conducted in Parkinson’s disease. Experimental Brain Research, 205, 375385. doi:10.1007/s00221-010-2372-6Google Scholar
Trubetzkoy, N. S. (1939/1971). Principles of phonology. Los Angeles, CA: University of California Press.Google Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (eds.), Organization of memory (pp. 381403). New York, NY: Academic. Press.Google Scholar
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352373. doi:10.1037/h0020071Google Scholar
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433460. doi:10.1007/978-1-4020-6710-5_3Google Scholar
Twaddell, W. F. (1935). On defining the phoneme. Baltimore, MD: Waverly Press.Google Scholar
Tyler, L. K., Bright, P., Fletcher, P., et al. (2004). Neural processing of nouns and verbs: The role of inflectional morphology. Neuropsychologia, 42, 512523. doi:10.1016/j.neuropsychologia.2003.10.001Google Scholar
Uppstad, P. H., & Tønnessen, F. E. (2010). The status of the concept of “phoneme” in psycholinguistics. Journal of Psycholinguistic Research, 39, 429442. doi:10.1007/s10936-010-9149-8Google Scholar
Vaissière, J. (1983). Language-independent prosodic features. In Cutler, A. & Ladd, D. R. (eds.), Prosody: Models and measurements (pp. 5366). New York, NY: Springer.Google Scholar
Vale, G. L., Davis, S. J., Lambeth, S. P., et al. (2017). Acquisition of a socially learned tool use sequence in chimpanzees: Implications for cumulative culture. Evolution and Human Behavior, 38, 635644. doi:10.1016/j.evolhumbehav.2017.04.007Google Scholar
Vale, G. L., Flynn, E. G., Pender, L., et al. (2016). Robust retention and transfer of tool construction techniques in chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 130, 2435. doi:10.1037/a0040000Google Scholar
van der Meer, M. A. A., Johnson, A., Schmitzer-Torbert, N. C., et al. (2010). Triple dissociation of information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial decision task. Neuron, 67, 2532. doi:10.1016/j.neuron.2010.06.023Google Scholar
Varela, F. J., Lachaux, J.-P., Rodriguez, E., et al. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229239. doi:10.1038/35067550Google Scholar
Varghese, L., Bharadwaj, H. M., & Shinn-Cunningham, B. G. (2015). Evidence against attentional state modulating scalp-recorded auditory brainstem steady-state responses. Brain Research, 1626, 146164. doi:10.1016/j.brainres.2015.06.038Google Scholar
Veldhuis, D., & Kurvers, J. (2012). Offline segmentation and online language processing units: The influence of literacy. Written Language & Literacy, 15, 165184. doi:10.1075/wll.15.2.03velGoogle Scholar
Vertes, R. P., Hoover, W. B., Szigeti-Buck, K., et al. (2007). Nucleus reuniens of the midline thalamus: Link between the medial prefrontal cortex and the hippocampus. Brain Research Bulletin, 71, 601609. doi:10.1016/j.brainresbull.2006.12.002Google Scholar
Vertes, R. P., Linley, S. B., & Hoover, W. B. (2015). Limbic circuitry of the midline thalamus. Neuroscience & Biobehavioral Reviews, 54, 89107. doi:10.1016/j.neubiorev.2015.01.014Google Scholar
Viena, T. D., Linley, S. B., & Vertes, R. P. (2018). Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat. Hippocampus, 28, 297311. doi:10.1002/hipo.22831Google Scholar
Vierordt, K., & Ludwig, C. (1855). Beiträge zu der Lehre von den Atembewegungen,. Archive für Physiologie. Heilkunde, 14, 253271.Google Scholar
Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., et al. (2013). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24, 17671777. doi:10.1093/cercor/bht025Google Scholar
Vigliocco, G., Vinson, D. P., Arciuli, J., et al. (2008). The role of grammatical class on word recognition. Brain and Language, 105, 175184. doi:10.1016/j.bandl.2007.10.003Google Scholar
Vigliocco, G., Vinson, D. P., Druks, J., et al. (2011). Nouns and verbs in the brain: A review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuroscience & Biobehavioral Reviews, 35, 407426. doi:10.1016/j.neubiorev.2010.04.007Google Scholar
Vousden, J. I., Brown, G. D. A., & Harley, T. A. (2000). Serial control of phonology in speech production: A hierarchical model. Cognitive Psychology, 41, 101175. doi:10.1006/cogp.2000.0739Google Scholar
Wade‐Woolley, L. (1999). First language influences on second language word reading: All roads lead to Rome. Language Learning, 49, 447471. doi:10.1111/0023-8333.00096Google Scholar
Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). Comprehensive test of phonological processing: CTOPP. Austin, TX: Pro-ed.Google Scholar
Walker, P., Bremner, J. G., Mason, U., et al. (2010). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21, 2125. doi:10.1177/0956797609354734Google Scholar
Wallace, M. T., & Stevenson, R. A. (2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105123. doi:10.1016/j.neuropsychologia.2014.08.005Google Scholar
Wang, Y.-T., Green, J. R., Nip, I. S. B., et al. (2010). Breath group analysis for reading and spontaneous speech in healthy adults. Folia Phoniatrica et Logopaedica, 62, 297302. doi:10.1159/000316976Google Scholar
Warren, R. M. (2008). Auditory perception: An analysis and synthesis (3rd ed.). Cambridge, UK: Cambridge University Press.Google Scholar
Warrington, E. K. (1975). The selective impairment of semantic memory. Quarterly Journal of Experimental Psychology, 27, 635657. doi:10.1080/14640747508400525Google Scholar
Wasow, T., & Arnold, J. (2005). Intuitions in linguistic argumentation. Lingua, 115, 14811496. doi:10.1016/j.lingua.2004.07.001Google Scholar
Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41, 989994. doi:10.1016/S0028-3932(02)00316-0Google Scholar
Watrous, A. J., Fell, J., Ekstrom, A. D., et al. (2015). More than spikes: Common oscillatory mechanisms for content-specific neural representations during perception and memory. Current Opinion in Neurobiology, 31, 3339. doi:10.1016/j.conb.2014.07.024Google Scholar
Watrous, A. J., Lee, D. J., Izadi, A., et al. (2013). A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus, 23, 656661. doi:10.1002/hipo.22124Google Scholar
Watson, P. J., & Montgomery, E. B. (2006). The relationship of neuronal activity within the sensori-motor region of the subthalamic nucleus to speech. Brain and Language, 97, 233240. doi:10.1016/j.bandl.2005.11.004Google Scholar
Wauters, L. N., Tellings, A. E. J. M., Van Bon, W. H. J., et al. (2003). Mode of acquisition of word meanings: The viability of a theoretical construct. Applied Psycholinguistics, 24, 385406. doi:10.1017/S0142716403000201Google Scholar
Wechsler, D. (1997). WAIS-III: Wechsler adult intelligence scale: Administration and scoring manual. San Antonio, TX: Harcourt Brace.Google Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7, 4963. doi:10.1016/S0163-6383(84)80022-3Google Scholar
Werker, J. F., & Yeung, H. H. (2005). Infant speech perception bootstraps word learning. TRENDS in Cognitive Sciences, 9, 519527. doi:10.1016/j.tics.2005.09.003Google Scholar
Whalen, D. H. (1990). Coarticulation is largely planned. Journal of Phonetics, 18, 335. doi:10.1016/S0095-4470(19)30356-0Google Scholar
Whiten, A., McGuigan, N., Marshall-Pescini, S., et al. (2009). Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 24172428. doi:10.1098/rstb.2009.0069Google Scholar
Willems, R. M. (ed.) (2015). Cognitive neuroscience of natural language use. Cambridge, UK: Cambridge University Press.Google Scholar
Williams, P. L., Beer, R. D., & Gasser, M. (2008). Evolving referential communication in embodied dynamical agents. ALIFE, 702709.Google Scholar
Wilson, S. M., Saygin, A. P., Sereno, M. I., et al. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7, 701702. doi:10.1038/nn1263Google Scholar
Winkworth, A. L., Davis, P. J., Adams, R. D., et al. (1995). Breathing patterns during spontaneous speech. Journal of Speech, Language, and Hearing Research, 38, 124144. doi:10.1044/jshr.3801.124Google Scholar
Wirth, F. P., & O’Leary, J. L. (1974). Locomotor behavior of decerebellated arboreal mammals: Monkey and raccoon. Journal of Comparative Neurology, 157, 5385. doi:10.1002/cne.901570106Google Scholar
Wirth, S., Yanike, M., Frank, L. M., et al. (2003). Single neurons in the monkey hippocampus and learning of new associations. Science, 300, 15781581. doi:10.1126/science.1084324Google Scholar
Wolf, G., & Love, N. (1997). Linguistics inside out: Roy Harris and his critics. Amsterdam, NL: John Benjamins.Google Scholar
Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. TRENDS in Cognitive Sciences, 2, 338347. doi:10.1016/S1364-6613(98)01221-2Google Scholar
Wray, A., & Perkins, M. R. (2000). The functions of formulaic language: An integrated model. Language and Communication, 20, 128. doi:10.1016/S0271-5309(99)00015-4Google Scholar
Wydell, T. N., & Kondo, T. (2003). Phonological deficit and the reliance on orthographic approximation for reading: A follow‐up study on an English‐Japanese bilingual with monolingual dyslexia. Journal of Research in Reading, 26, 3348. doi:10.1111/1467-9817.261004Google Scholar
Yakusheva, T. A., Blazquez, P. M., Chen, A., et al. (2013). Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula. Journal of Neuroscience, 33, 1514515160. doi:10.1523/JNEUROSCI.2118-13.2013Google Scholar
Yang, C. D. (2004). Universal grammar, statistics or both? TRENDS in Cognitive Sciences, 8, 451456. doi:10.1016/j.tics.2004.08.006Google Scholar
Yee, E., Jones, M. N., & McRae, K. (2018). Semantic memory. In Wixted, J. T. & Thompson-Schill, S. (eds.), Stevens’ handbook of experimental psychology and cognitive neuroscience (Vol. 3, pp. 319356). New York, NY: Wiley.Google Scholar
Yu, C., & Smith, L. B. (2013). Joint attention without gaze following: Human infants and their parents coordinate visual attention to objects through eye-hand coordination. PLoS One, 8, e79659. doi:10.1371/journal.pone.0079659Google Scholar
Yu, W., & Krook-Magnuson, E. (2015). Cognitive collaborations: Bidirectional functional connectivity between the cerebellum and the hippocampus. Frontiers in systems neuroscience, 9. doi:/10.3389/fnsys.2015.00177Google Scholar
Zhou, X., Ostrin, R. K., & Tyler, L. K. (1993). The noun-verb problem and Chinese aphasia: Comments on Bates et al. 1991. Brain and Language, 45, 8693. doi:10.1006/brln.1993.1035Google Scholar
Zingeser, L. B., & Berndt, R. S. (1988). Grammatical class and context effects in a case of pure anomia: Implications for models of language production. Cognitive Neuropsychology, 5, 473516. doi:10.1080/02643298808253270Google Scholar
Zoefel, B., & VanRullen, R. (2016). EEG oscillations entrain their phase to high-level features of speech sound. NeuroImage, 124, 1623. doi:10.1016/j.neuroimage.2015.08.054Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Victor J. Boucher, Université de Montréal
  • Book: The Study of Speech Processes
  • Online publication: 14 January 2021
  • Chapter DOI: https://doi.org/10.1017/9781316882764.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Victor J. Boucher, Université de Montréal
  • Book: The Study of Speech Processes
  • Online publication: 14 January 2021
  • Chapter DOI: https://doi.org/10.1017/9781316882764.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Victor J. Boucher, Université de Montréal
  • Book: The Study of Speech Processes
  • Online publication: 14 January 2021
  • Chapter DOI: https://doi.org/10.1017/9781316882764.015
Available formats
×