Published online by Cambridge University Press: 16 March 2010
Abstract
We prove that the branchwidth of a bridgeless graph is equal to the branchwidth of its cycle matroid. Our proof is based on branch-decompositions of hypergraphs. By matroid duality, a direct corollary of this result is that the branchwidth of a bridgeless planar graph is equal to the branchwidth of its planar dual.
Introduction.
The notion of branchwidth was introduced by Robertson and Seymour in their seminal paper Graph Minors X [3]. Very roughly speaking, the goal is to decompose a structure S along a tree T in such a way that subsets of S corresponding to disjoint branches of T are pairwise as disjoint as possible. One can define the branchwidth of various structures such as graphs, hypergraphs, matroids, submodular functions … Our goal in this paper is to prove that the definitions of branchwidth for graphs and matroids coincide in the sense that the branchwidth of a bridgeless graph is equal to the branchwidth of its cycle matroid. This answers a question of Thomas [5], also cited in Geelen, Gerards, Robertson and Whittle [1].
Let us now define properly these notions.
Let H = (V, E) be a graph, or a hypergraph, and (E1, E2) be a partition of E. The border of (E1, E2) is the set of vertices which belong to both an edge of E1 and an edge of E2. We denote this by δ(E1, E2), or simply by δ(E1).
A branch-decomposition T of H is a ternary tree T and a bijection from the set of leaves of T into the set of edges of H.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.