Published online by Cambridge University Press: 05 May 2013
To the memory of Adriano Barlotti and Lucia Gionfriddo
Abstract
In this paper I shall try to review some results which were obtained in the area of factorizations and decompositions of complete graphs admitting an automorphism group with some specified properties. These properties primarily involve the action of the group on the objects of the decomposition, most often vertices, but also edges, subgraphs of the decomposition or factors of the factorization.
Classification theorems were obtained in highly symmetric situations, for example when the group acts doubly transitively on vertices, and it is often the case that all examples arise from geometry in this context.
A “less” symmetric situation involves a group acting sharply transitively on vertices, which means for any two given vertices there exists precisely one group element mapping the first vertex to the second one. The vertices of the complete graph can be identified with group elements in this case, and the decomposition or factorization can be described entirely within the group by techniques which are generally known as “difference” or “starter-like” methods. Existence may be a non-trivial question and generally depends on the isomorphism type of the chosen group.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.