Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T22:03:26.073Z Has data issue: false hasContentIssue false

Part IV - Focal Points of Urban Sustainability

Published online by Cambridge University Press:  27 March 2020

Claudia R. Binder
Affiliation:
École Polytechnique Fédérale de Lausanne
Romano Wyss
Affiliation:
École Polytechnique Fédérale de Lausanne
Emanuele Massaro
Affiliation:
École Polytechnique Fédérale de Lausanne
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bauen, A. (2014). EU Auto-Fuel Biofuels Roadmap. European Biofuels Technology Platform. Brussels: E4tech.Google Scholar
Bioregional Development Group. (October 2017). One Planet Goals and Guidance for Cities and Regions 2017. London: Bioregional.Google Scholar
Boermans, T., Bettgenhäuser, K., Offermann, M., & Schimschar, S. (2012). Renovation Tracks for Europe up to 2050. Technical report. ECOFYS Germany GmbH on behalf of European Insulation Manufacturers Association.Google Scholar
Cajot, S., 2018. Interactive optimization for supporting multi-criteria decisions in urban and energy system planning (Doctoral thesis). EPFL, Lausanne, Switzerland. DOI:10.5075/epfl-thesis-8925.Google Scholar
Cajot, S., Schüler, N., Peter, M., Koch, A., & Maréchal, F. (2020). Interactive Optimization with Parallel Coordinates: Exploring Multidimensional Spaces for Decision Support. Front ICT 2019. DOI:10.3389/fict.2018.00032.Google Scholar
Bauer, C., Heck, T., Dones, R., Mayer-Spohn, O., & Blesl, M. (2008). Technical data, costs, and life cycle inventories of advanced fossil power generation systems. NEEDS Project final report.Google Scholar
Codina Gironès, V. P. (2018). On the assessment of the CO2 mitigation potential of woody biomass. Frontiers in Energy Research, 5, 37.Google Scholar
ecoinvent. (2013). Swiss Centre for Life Cycle Inventories, Overview and methodology: Data quality guideline for the ecoinvent database version 3, 2013.Google Scholar
ECOFYS. (2012). Renovation Tracks for Europe up to 2050: Building renovation in Europe – What Are the Choices? European Insulation Manufacturers Association (Eurima). Köln: ECOFYS Germany GmbH. www.eurima.org/publications/90/146/Renovation-Tracks-for-Europe-up-to-2050.html.Google Scholar
ENTRANZE Consortium. (2014). ENTRANZE Online database. An in-depth analysis of the structure and dynamics of buildings and related energy systems in EU-27 (+Croatia and Serbia). Enerdata. www.entranze.enerdata.eu/.Google Scholar
Erkmann, S. (1997). Industrial Ecology: A Historical View. Industrial Ecology.Google Scholar
European Commission. (2015, Jan). Thematic Issue: Noise Impacts on Health (Issue 47) (S. C.-U.(UWE), Ed.) Bristol.Google Scholar
European Commission, Directorate-General for Energy. (2016). An EU Strategy on Heating and Cooling. http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52016DC0051Google Scholar
Favrat, D., Marechal, F., & Epelly, O. (2008). The challenge of introducing an exergy indicator in a local law on energy. Energy, 33(2), 130136. DOI:10.1016/j.energy.2007.10.012.Google Scholar
Frischknecht, R., & Jolliet, O. (2016). Global Guidance for Life Cycle Impact Assessment Indicators. Publication of the UNEP/SETAC Life Cycle Initiative, Paris, DTI/2081/PA, ISBN, 978–992.Google Scholar
Girardin, L., Maréchal, F., & Favrat, D. (2012). A GIS-based Methodology for the Evaluation of Integrated Energy Systems in Urban Area. Lausanne: EPFL. DOI:10.5075/epfl-thesis-5287.Google Scholar
Hill, J. D., Marshall, J. D., & Tessum, C. W. (2014). Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. PNAS.Google Scholar
ICCT. The International Council on Clean Transportation. (2017). European Vehicle Market Statistics, Pocketbook 2017/2018. http://eupocketbook.org/wp-content/uploads/2017/11/ICCT_ocketbook_2017.pdf.Google Scholar
IEA Bioenergy. (2009). Bioenergy – a Sustainable and Reliable Energy Source. www.ieabioenergy.com/publications/main-report-bioenergy-a-sustainable-and-reliable-energy-source-a-review-of-status-and-prospects/ (accessed 30.1.19).Google Scholar
International Energy Agency. (2014). Energy Efficiency Indicators: Fundamentals on Statistics, 2014. France: IEA.Google Scholar
International Energy Agency. (2015). WEO-2015 Special Report: Energy and Climate Change. France: IEA.Google Scholar
International Energy Agency. (2016). Energy Technology Perspectives 2016: Towards Sustainable Urban Energy Systems. France: OECD/IEA.Google Scholar
International Energy Agency. (2017a). Energy Technology Perspectives 2017: Catalysing Energy Technology Transformations. France: OECD/IEA. www.iea.org/etp2017.Google Scholar
International Energy Agency. (2017b). Market Report Series: Energy Efficiency 2017. France: IEA. DOI:10.1787/renew-2017-en.Google Scholar
International Institute for Applied Systems Analysis (IIASA) (2012). Global Energy Assessment: Toward a Sustainable Future. Johansson, T, Nakicenovic, N, Patwardhan, A, & Gomez-Echeverri, L (eds.). Cambridge University Press. www.globalenergyassessment.org.CrossRefGoogle Scholar
International Renewable Energy Agency. (2016). Renewable Energy in Cities. Abu Dhabi: IRENA. www.irena.org.Google Scholar
International Renewable Energy Agency. (2018). Renewable Energy and Jobs: Annual Review 2018. United Arab Emirates: IRENA.Google Scholar
Lund, H., Werner, S., Wiltshire, R., et al. (2014). 4th Generation District Heating (4GDH). Energy, 68, 111. DOI:10.1016/j.energy.2014.02.089.Google Scholar
Markandya, A., Saygin, D., Miketa, A., Gielen, D., & Wagner, N. (2016). The True Cost of Fossil Fuels: Saving on the Externalities of Air Pollution and Climate Change. International Renewable Energy Agency (IRENA). IRENA. ISBN:978–92–95111–87–5.Google Scholar
Massaro, E. (2020). A study of ride sharing opportunities in the city of Santiago de Chile. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems, pp. 480–488, Cambridge University Press.Google Scholar
Moreau, V. (2017). Moreau, V., Sahakian, M., van Griethuysen, P., & Vuille, F. (2017). Coming full circle: Why social and institutional dimensions matter for the circular economy. Journal of Industrial Ecology, 21(3), 497506.Google Scholar
Odyssee Consortium. (2018). Odyssee: European energy efficiency and demand database. Enerdata. www.odyssee-mure.eu.Google Scholar
Papadimitriou, G., Ntziachristos, L., Wüthrich, P., et al. (2013). Transport data collection supporting the quantitative analysis of measures relating to transport and climate change (TRACCS).Google Scholar
Rode, P., Keim, C., Robazza, G., Viejo, P., & Schofield, J. (2014). Cities and energy: Urban morphology and residential heat-energy demand. Environment and Planning B: Planning and Design, 41(1), 138162. DOI:10.1068/b39065.Google Scholar
Rodrigue, J.-P., Comptois, C., & Slack, B. (2017). The geography of transport systems. London: Routledge, Taylor & Francis Group.Google Scholar
Schüler, N., Cajot, S., Peter, M., Page, J., & Maréchal, F. (2018). The Optimum Is Not the Goal: Capturing the Decision Space for the Planning of New Neighborhoods. Front Built Environ 2018. DOI:10.3389/fbuil.2017.00076.Google Scholar
Suciu, R., Girardin, L., & Maréchal, F. (2018). Energy integration of CO2 networks and power to gas for emerging energy autonomous cities in Europe. Energy. DOI:10.1016/j.energy.2018.05.083.Google Scholar
Transport & Environment. (2017). Roadmap to climate-friendly land freight and buses in Europe. www.transportenvironment.org/sites/te/files/publications/Full_%20Roadmap%20freight%20buses%20Europe_2050_FINAL%20VERSION_corrected%20%282%29.pdf (accessed 30.1.19).Google Scholar
Tukker, A. (2015). Product services for a resource-efficient and circular economy – a review. Journal of Cleaner Production, 97, 7691.Google Scholar
UN-HABITAT. (2011). Cities and Climate Change: Global Report on Human Settlements 2011. United Nations Human Settlements Programme. London, Washington, DC: Earthscan. https://unhabitat.org/books/cities-and-climate-change-global-report-on-human-settlements-2011/.Google Scholar
United Nation Secretary-General. (11 May 2017). Progress towards the Sustainable Development Goals: Report of the Secretary-General. New York: UN. DOI:E/2017/66.Google Scholar
United Nations Environment Programme (UNEP) (2015). District Energy in Cities: Unlocking the Potential of Energy Efficiency and Renewable Energy. Tech. rep., United Nations Environment Programme, Paris. https://europa.eu/capacity4dev/file/23122/download?token=i3wTZfTk.Google Scholar
United Nations, Department of Economic and Social Affairs (DESA) (2013). World Economic and Social Survey 2013: Sustainable Develoment Challenges. New York: UN.Google Scholar
World Health Organization (WHO) (2016). World Health Statistics 2016: Monitoring Health for the SDGs, Sustainable Development Goals. Geneva: WHO.Google Scholar

References

Akadiri, P. O., Chinyio, E. A., & Olomolaiye, P. O. (2012). Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings, 2(2), 126152. https://doi.org/10.3390/buildings2020126.Google Scholar
Allwood, J. M., Ashby, M. F., Gutowski, T. G., & Worrell, E. (2011). Material efficiency: A white paper. Resources, Conservation and Recycling, 55(3), 362381. https://doi.org/https://doi.org/10.1016/j.resconrec.2010.11.002.Google Scholar
Baccini, P., & Brunner, P. H. (2012). Metabolism of the Anthroposphere: Analysis, Evaluation, Design (2nd edition). Cambridge, MA: MIT Press.Google Scholar
Bala, B. K., Arshad, F. M., & Noh, K. M. (2017). Causal Loop Diagrams, 37–51. https://doi.org/10.1007/978-981-10-2045-2_3.Google Scholar
Belcher, J. C., & Vazquez-Calcerrada, P. B. (1972). A cross-cultural approach to the social functions of housing. Journal of Marriage and Family, 34(4), 750761. www.jstor.org/stable/350328.Google Scholar
Berardi, U. (2012). Sustainability assessment in the construction sector: Rating systems and rated buildings. Sustainable Development, 20(6), 411424. https://doi.org/10.1002/sd.532.Google Scholar
Beshears, J., & Gino, F. (2015). Leaders as decision architects. Harvard Business Review, 2015(May). https://doi.org/102262149.Google Scholar
Binder, C. R. (2007). From material flow analysis to material flow management. Part II: the role of structural agent analysis. Journal of Cleaner Production, 15(17), 16051617. https://doi.org/10.1016/j.jclepro.2006.08.017.Google Scholar
Binder, C. R, Hutter, M., Pang, M., & Webb, R. (2020). System science and sustainability assessment. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 3064.Google Scholar
Binder, C. R., Baldi, M. G., Gex, B., & Massaro, E. (2020b). The sustainability solution space. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 181208.CrossRefGoogle Scholar
Blumer, D. (2012). Vermietungskriterien der Gemeinnützigen Wohnbauträger in der Schweiz. Eine Studie zur Anwendung von Belegungsvorgaben und Einkommenslimiten bei 1000 gemeinnützigen Wohnbauträgern. BWO. www.bwo.admin,ch/dokumentation.Google Scholar
Brunner, P. H., & Rechberger, H. (2005). Practical Handbook of Material Flow Analysis. New York: Lewis Publishers.Google Scholar
Brunner, P., & Rechberger, H. (2017). Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers (2nd edition). Boca Raton: CRC Press.Google Scholar
Bundesamt für Statistik. (2008). Haushaltsszenarien – Entwicklung der Privathaushalte zwischen 2005 und 2030. BSF Aktuell, 112.Google Scholar
Chen, W.-Q., & Graedel, T. E. (2015). In-use product stocks link manufactured capital to natural capital. Proceedings of the National Academy of Sciences, 112(20), 62656270. https://doi.org/10.1073/pnas.1406866112.Google Scholar
Cherry, E., & Petronis, J. (2016). Architectural Programming. www.wbdg.org/design-disciplines/architectural-programming.Google Scholar
Clune, S., Morrissey, J., & Moore, T. (2012). Size matters: House size and thermal efficiency as policy strategies to reduce net emissions of new developments. Energy Policy, 48, 657667. https://doi.org/10.1016/j.enpol.2012.05.072.Google Scholar
EEA & FOEN. (2016). Urban Sprawl in Europe. https://doi.org/10.1002/9780470692066.Google Scholar
European Commission. (2014). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on resource efficiency opportunities in the building sector. Brussels.Google Scholar
European Commission. (2016). EU Construction and Demolition Waste Protocol. Brussels.Google Scholar
European Parliament. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA relevance). Official Journal of the European Union.Google Scholar
Evans, A. W., & Hartwich, O. M. (2005). Unaffordable Housing: Fables and Myths. London.Google Scholar
Fischer-Kowalski, M., Krausmann, F., Giljum, S., et al. (2011). Methodology and indicators of economy-wide material flow accounting: State of the art and reliability across sources. Journal of Industrial Ecology, 15(6), 855876. https://doi.org/10.1111/j.1530-9290.2011.00366.x.Google Scholar
FOEN. (2001). Bauabfälle Schweiz – Mengen, Perspektiven und Entsorgungswege. Band 1: Kennwerte [Construction and demolition waste in Switzerland – amounts, perspectives and disposal routes. Volume 1: Statistical values]. Umwelt-Materialien. Bern: Federal Office for the Environment (FOEN).Google Scholar
Friege, J., Holtz, G., & Chappin, É. J. L. (2016) . Exploring homeowners’ insulation activity. Jasss, 19(1), 120. https://doi.org/10.18564/jasss.2941.Google Scholar
Fries, D., Hasenmaile, F., Hürzeler, F., et al. (2017). Tenants wanted. Investment Solutions & Products: Economic Research, Swiss Real (March).Google Scholar
Froemelt, A., Dürrenmatt, D. J., & Hellweg, S. (2018). Using data mining to assess environmental impacts of household consumption behaviors. Environmental Science & Technology, 52(15), 84678478. https://doi.org/10.1021/acs.est.8b01452.Google Scholar
Gauvain, M., & Altman, I. (1982). A cross-cultural analysis of homes. Architecture & Comportement, 2(1), 2746.Google Scholar
Giddens, A. (1978). New Rules of Sociological Methods. London: Hutchinson.Google Scholar
Gordon, T. J., & Hayward, H. (1968). Initial experiments with the cross impact matrix method of forecasting. Futures, 1(2), 100116. https://doi.org/https://doi.org/10.1016/S0016-3287(68)80003-5.Google Scholar
Grams, A. (2018). Playing with Density: the Compass for Inward Development as a Problem-Focused Methodology for Densification in Small and Medium-Sized Communes (Vol. 8). Zürich: vdf Hochschulverlag.Google Scholar
Halla, P., & Binder, C. R. (2020). Sustainability Assessment: Introduction and Framework. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 729.Google Scholar
Heeren, N. (2017). Modelling environmental impacts of building: Energy, material, and dynamics. ETH Zurich. https://doi.org/10.3929/ETHZ-B-000225616.Google Scholar
Heeren, N., & Hellweg, S. (2018). Tracking construction material over space and time: Prospective and geo-referenced modeling of building stocks and construction material flows. Journal of Industrial Ecology, 23(1), 253267. https://doi.org/10.1111/jiec.12739.Google Scholar
Heeren, N., Jakob, M., Martius, G., Gross, N., & Wallbaum, H. (2013). A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 20, 4556. https://doi.org/https://doi.org/10.1016/j.rser.2012.11.064.Google Scholar
Heeren, N., Mutel, C. L., Steubing, B., Ostermeyer, Y., Wallbaum, H., & Hellweg, S. (2015). Environmental impact of buildings – What Matters? Environmental Science and Technology, 49(16), 98329841. https://doi.org/10.1021/acs.est.5b01735.Google Scholar
Hollberg, A., Tschetwertak, J., Schneider, S., & Habert, G. (2018). Design-integrated LCA using early BIM. In Benetto, E, Gericke, K, & Guiton, M (eds.), Designing Sustainable Technologies, Products and Policies: From Science to Innovation. Cham: Springer International Publishing, pp. 269279. https://doi.org/10.1007/978-3-319-66981-6_30.Google Scholar
Hondo, H., Moriizumi, Y., & Sakao, T. (2006). A method for technology selection considering environmental and socio-economic impacts: Input-output optimization model and its application to housing policy. International Journal of Life Cycle Assessment, 11(6), 383393. https://doi.org/10.1065/lca2006.03.245.CrossRefGoogle Scholar
Hügi, M., Gerber, P., Hauser, A., et al. (2008). Abfallwirtschaftsbericht 2008. Zahlen und Entwicklungen der schweizerischen Abfallwirtschaft 2005–2007. Bern: Federal Office for the Environment (FOEN).Google Scholar
IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Edenhofer, O, Pichs-Madruga, R, Sokona, E. F. Y., Kadner, S, Seyboth, K, Adler, A, … Minx, J. C., eds.), Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York: Cambridge University Press. https://doi.org/10.1017/CBO9781107415416.Google Scholar
IRP. (2017). Green Technology Choices: The Environmental and Resource Implications of Low-Carbon Technologies. Suh, S., Bergesen, J., Gibon, T. J., Hertwich, E., Taptich, M. A report of the International Resource Panel. Nairobi, Kenya: United Nations Environment Programme.Google Scholar
IRP. (2018). The Weight of Cities: Resource Requirements of Future Urbanization. Swilling, M., Hajer, M., Baynes, T., Bergesen, J., Labbé, F., Musango, J. K., Ramaswami, A., Robinson, B., Salat, S., Suh, S., Currie, P., Fang, A., Hanson, A. Kruit, K., Reiner, M., Smit, S., Tabory, S. A Report by the International Resource Panel. Nairobi, Kenya: United Nations Environment ProgrammeGoogle Scholar
Jin, R., Yuan, H., & Chen, Q. (2020). Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources, Conservation and Recycling, 140(May 2018), 175188. https://doi.org/10.1016/j.resconrec.2018.09.029.Google Scholar
Knoeri, C., Binder, C. R., & Althaus, H.-J. (2011). An agent operationalization approach for context specific agent-based modeling. Journal of Artificial Societies and Social Simulation, 14(2). https://doi.org/10.18564/jasss.1729.Google Scholar
Knoeri, C., Binder, C. R., & Althaus, H. J. (2011). Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials. Resources, Conservation and Recycling, 55(11), 10391050. https://doi.org/10.1016/j.resconrec.2011.05.018.Google Scholar
Knoeri, C., Nikolic, I., Althaus, H.-J., & Binder, C. R. (2014). Enhancing recycling of construction materials: An agent based model with empirically based decision parameters. Journal of Artificial Societies and Social Simulation, 17(3), 10. https://doi.org/10.18564/jasss.2528.Google Scholar
Krausmann, F., Wiedenhofer, D., Lauk, C., et al. (2017). Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proceedings of the National Academy of Sciences, 114(8), 18801885. https://doi.org/10.1073/pnas.1613773114.Google Scholar
Lawrence, R. J. (1987a). Housing, Dwellings and Homes: Design Theory, Research and Practice. Chichester: John Wiley & Sons.Google Scholar
Lawrence, R. J. (1987b). What makes a house a home? Environment and Behavior, 19(2), 154168. https://doi.org/10.1177/0013916587192004.Google Scholar
Lawrence, R. J. (2004). Housing and health: From interdisciplinary principles to transdisciplinary research and practice. Futures, 36(4), 487502. https://doi.org/10.1016/j.futures.2003.10.001.Google Scholar
Lovell, H. (2004). Framing sustainable housing as a solution to climate change. Journal of Environmental Policy and Planning, 6(1), 3555. https://doi.org/10.1080/1523908042000259677.Google Scholar
Marca, D., & McGowan, C. L. (1987). SADT: Structured Analysis and Design Technique. New York: McGraw-Hill.Google Scholar
Mateus, R., & Bragança, L. (2011). Sustainability assessment and rating of buildings: Developing the methodology SBToolPT–H. Building and Environment, 46(10), 19621971. https://doi.org/https://doi.org/10.1016/j.buildenv.2011.04.023.Google Scholar
Meadows, D. H. (2008). Thinking in Systems: A Primer. (Wright, D, ed.). London: Chelsea Green Publishing. https://search.library.wisc.edu/catalog/9910100084402121.Google Scholar
Mißler-Behr, M. (1993). Methoden der Szenarioanalyse. Deutscher Universitätsverlag. https://books.google.ch/books?id=_486AAAACAAJ.Google Scholar
Moura, M. C. P., Smith, S. J., & Belzer, D. B. (2015). 120 years of U.S. residential housing stock and floor space. PLoS ONE, 10(8), 118. https://doi.org/10.1371/journal.pone.0134135.Google Scholar
Müller, D. B., Liu, G., Løvik, A. N., et al. (2013). Carbon emissions of infrastructure development. Environmental Science and Technology, 47(20), 1173911746. https://doi.org/10.1021/es402618 m.Google Scholar
OECD. (2012). Compact City Policies: A Comparative Assessment (OECD Green). OECD Publishing.Google Scholar
Pattaroni, L., & Marmy, V. (2016). Les coopératives de logements dans le canton de Vaud. Lausanne: Département des institutions et de la sécurité (DIS), Service des communes et du logement (SCL).Google Scholar
Prochorskaite, A., Couch, C., Malys, N., & Maliene, V. (2016). Housing stakeholder preferences for the “soft” features of sustainable and healthy housing design in the UK. International Journal of Environmental Research and Public Health, 13(1). https://doi.org/10.3390/ijerph13010111.Google Scholar
Schilling, T., Mühlemeier, S., Wyss, R., & Binder, C. R. (2020). A Concept for Sustainability Transition Assessment (STA): A Dynamic Systems Perspective Informed by Resilience Thinking. In Binder, C. R., Massaro, E, & Wyss, R (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 123138.Google Scholar
Scholz, R. W., & Tietje, O. (2002). Embedded Case Study Methods: Integrating Quantitative And Qualitative Knowledge. Thousand Oaks: Sage Publications.Google Scholar
Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J., & Griskevicius, V. (2007). The constructive, destructive, and reconstructive power of social norms. Psychological Science, 18(5), 429. https://doi.org/10.1111/j.1467-9280.2007.01917.x.Google Scholar
Seyfang, G. (2010). Community action for sustainable housing: Building a low-carbon future. Energy Policy, 38(12), 76247633. https://doi.org/10.1016/j.enpol.2009.10.027.Google Scholar
Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65(August), 201217. https://doi.org/10.1016/j.conbuildmat.2014.04.117.Google Scholar
Soust-Verdaguer, B., Llatas, C., & García-Martínez, A. (2017). Critical review of BIM-based LCA method to buildings. Energy and Buildings, 136, 110120. https://doi.org/10.1016/j.enbuild.2016.12.009.Google Scholar
Spoerri, A., Lang, D. J., Binder, C. R., & Scholz, R. W. (2009). Expert-based scenarios for strategic waste and resource management planning: C&D waste recycling in the Canton of Zurich, Switzerland. Resources, Conservation and Recycling, 53(10), 592600. https://doi.org/https://doi.org/10.1016/j.resconrec.2009.04.011.Google Scholar
Sterman, J. D. (2006). Learning from evidence in a complex world. American Journal of Public Health, 96(3), 505514. https://doi.org/10.2105/AJPH.2005.066043.Google Scholar
Støa, E., & Aune, M. (2012). Sustainable housing cultures. In International Encyclopedia of Housing and Home (Vol. 7). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-047163-1.00556-7.Google Scholar
Swiss Federal Statistical Office. (2011). Living, building: Switzerland’s built environment. Values, (2), 28.Google Scholar
Swiss Federal Statistical Office. (2018). Building and Dwelling Statistics. Neuchâtel, Switzerland:Google Scholar
UN – DESA. (2017). World Population Prospects: The 2017 Revision. United Nations, Department of Economic and Social Affairs. https://population.un.org/wpp/Google Scholar
UNHCR & UN-Habitat. (2012). The Right to Adequate Housing, 21(21). https://doi.org/10.1017/CBO9781107415324.004.Google Scholar
United Nations. (2018). World Urbanization Prospects: The 2018 Revision. United Nations, Department of Economic and Social Affairs, Population Division.Google Scholar
United States Census Bureau. (2018). Highlights of Annual 2017 Characteristics of New Housing. Office of Policy Development and Research (PD&R) US Department of Housing and Urban Development.Google Scholar
Waddell, P. (2002). UrbanSim: Modeling urban development for land use, transportation, and environmental planning. Journal of the American Planning Association, 68(3), 297314. https://doi.org/10.1080/01944360208976274.Google Scholar
Wiek, A., & Binder, C. (2005). Solution spaces for decision-making: A sustainability assessment tool for city-regions. Environmental Impact Assessment Review, 25(6), 589608. https://doi.org/10.1016/j.eiar.2004.09.009.Google Scholar
Williams, J. (2006). Innovative solutions for averting a potential resource crisis: The case of one-person households in England and Wales. Environment, Development and Sustainability, 9(3), 325354. https://doi.org/10.1007/s10668-006-9068-x.Google Scholar
Wilson, A., & Boehland, J. (2008). Small is Beautiful: U.S. house size, resource use, and the environment. Journal of Industrial Ecology, 9(1–2), 277287. https://doi.org/10.1162/1088198054084680.Google Scholar
World Health Organization (WHO) (2010). Developing guidance for health protection in the built environment: Mitigation and adaptation responses Meeting report. International Workshop on Housing, Health and Climate Change.Google Scholar
Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications: A review. Applied Energy, 115, 164173. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.10.062.Google Scholar
Youcai, Z., & Sheng, H. (2017). Pollution Control and Resource Recovery: Industrial Construction and Demolition Wastes. Oxford: Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-811754-5.00001-4.Google Scholar

References

Anton, C. E., & Lawrence, C. (2014). Home is where the heart is: The effect of place of residence on place attachment and community participation. Journal of Environmental Psychology, 40, 451461.Google Scholar
Badami, M. G., & Ramankutty, N. (2015). Urban agriculture and food security: A critique based on an assessment of urban land constraints. Global Food Security, 4, 815.Google Scholar
Baker, S. E. (2012). Evaluating the Feasibility of Urban Agriculture on Oakland’s Private Land. (Bachelor’s thesis). University of Berkeley.Google Scholar
Barrett, T., Feola, G., Krylova, V., & Khusnitdinova, M. (2017). The application of Rapid Appraisal of Agricultural Innovation Systems (RAAIS) to agricultural adaptation to climate change in Kazakhstan: A critical evaluation. Agricultural Systems, 151, 106113.Google Scholar
Beilin, R., & Hunter, A. (2011). Co-constructing the sustainable city: How indicators help us “grow” more than just food in community gardens. Local Environment, 16, 523538.Google Scholar
Binder, C. R, Hutter, M., Pang, M., & Webb, R. (2020). System science and sustainability assessment. In Binder, C. R., Massaro, E., & Wyss, R. (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 3064.Google Scholar
Binder, C. R., Feola, G., & Steinberger, J. K. (2010). Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environmental Impact Assessment Review, 30, 7181.Google Scholar
Binder, C. (2007). From material flow analysis to material flow management Part I: social sciences modeling approaches coupled to MFA. Journal of Cleaner Production, 15, 15961604.Google Scholar
Blixen Magariños, C., Colnago Vieyto, P., González Jiménez, N., Márquez Scotti, C., & Chiappe Hernández, M. (2007). Indicadores de sostenibilidad para la agricultura urbana. I seminario de cooperación y desarrollo en espacios rurales iberoamericanos. Sostenibilidad e indicadores. Almeria, 16–17 Octubre, 2007Google Scholar
Certomá, C., & Tornaghi, C. (2015). Political gardening: Transforming cities and political agency. Local Environment, 20(10), 11231131.Google Scholar
Chappell, M. J., Wittman, H., Bacon, C. M., et al. (2013). Food sovereignty: An alternative paradigm for poverty reduction and biodiversity conservation in Latin America. F1000Research, 2, 235.Google Scholar
De Bon, H., Parrot, L., & Moustier, P. (2010). Sustainable urban agriculture in developing countries. A review. Agronomy for Sustainable Development, 30, 2132.Google Scholar
de Zeeuw, H. (2004). The development of Urban Agriculture; some lessons learnt. Keynote presented at the conference Urban Agriculture, Agro-tourism and City Region Development, Beijing, 10–14 October.Google Scholar
de Zeeuw, H., & Dubbeling, M. (2009). Cities, food and agriculture: Challenges and the way forward. Presented at the technical consultation Agriculture, Food and Cities, Rome, 24–25 September.Google Scholar
de Zeeuw, H., & Drechsel, P. (Eds.) (2015). Cities and Agriculture: Developing Resilient Urban Food Systems. London: Routledge.Google Scholar
Drechsel, P., Graefe, S., Sonou, M., & Cofie, O. O. (2006). Informal Irrigation In Urban West Africa: An Overview. Research Report Series. Colombo, Sri Lanka: International Water Management Institute.Google Scholar
Drechsel, P., & Dongus, S. (2010). Dynamics and sustainability of urban agriculture: examples from sub-Saharan Africa. Sustainability Science, 5(1), 69.Google Scholar
Drechsel, P., & Keraita, B. (Eds.) (2014). Irrigated Urban Vegetable Production in Ghana: Characteristics, Benefits and Risk Mitigation, 2nd edition. Colombo, Sri Lanka: International Water Management Institute (IWMI).Google Scholar
Eigenbrod, C., & Gruda, N. (2015). Urban vegetable for food security in cities: A review. Agronomy for Sustainable Development, 35, 483498.Google Scholar
FAO (1996). The State of Food and Agriculture. Rome: FAO.Google Scholar
FAO (1999). Committee on Agriculture – COAG/FAO. Urban and peri-urban agriculture. OAG/99/10. Presented at the Fifteenth Session of the COAG. 25–29 January. Rome: FAO.Google Scholar
FAO (2007). Profitability and sustainability of urban and peri-urban agriculture. Agricultural Management, Marketing and Finance Occasional Paper. Rome: FAO.Google Scholar
Farming Concrete (2015). Farming Concrete Data Collection Toolkit. New York: Design Trust for Public SpaceGoogle Scholar
Fritz, L., & Meinherz, F. (2020). The politics of participatory sustainability assessments: An analysis of power. In Binder, C. R., Massaro, E., & Wyss, R. (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 87122.Google Scholar
Galluzzi, G., Eyzaguirre, P., & Negri, V. (2010). Home gardens: Neglected hotspots of agro-biodiversity and cultural diversity. Biodiversity and Conservation, 19, 36353654.Google Scholar
Gasparatos, A., & Scolobig, A. (2012). Choosing the most appropriate sustainability assessment tool. Ecological Economics, 80, 17.Google Scholar
Ghosh, S. (2014). Measuring sustainability performance of local food production in home gardens. Local Environment, 19(1), 3355.Google Scholar
Godin, L., & Sahakian, M. (2018). Cutting through conflicting prescriptions: How guidelines inform “healthy and sustainable” diets in Switzerland. Appetite, 130, 123133.Google Scholar
Goldstein, B. P., Hauschild, M. Z., Fernández, J. E., & Birkved, M. (2017). Contributions of local farming to urban sustainability in the northeast United States. Environmental Science & Technology, 51, 73407349.Google Scholar
Goldstein, B., Hauschild, M., Fernández, J., & Birkved, M. (2016a). Urban versus conventional agriculture, taxonomy of resource profiles: A review. Agronomy for Sustainable Development, 36(1), 9.Google Scholar
Goldstein, B., Hauschild, M., Fernández, J., & Birkved, M. (2016b). Testing the environmental performance of urban agriculture as a food supply in northern climates. Journal of Cleaner Production, 135, 984994.Google Scholar
Goodman, D., Du Puis, M., & Goodman, M. K. (2012). Alternative Food Networks: Knowledge, Practice, and Politics. London: Routledge.Google Scholar
Grewal, S. S., & Grewal, P. S. (2012). Can cities become self-reliant in food? Cities, 29(1), 111.Google Scholar
Halla, P., & Binder, C. R. (2020). Sustainability Assessment: Introduction and Framework. In Binder, C. R., Massaro, E., & Wyss, R. (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 729.Google Scholar
Hashim, N. (2015). Reversing food desertification: Examining urban farming in Louisville, Chicago and Detroit. Local Environment, 20(6), 611636.Google Scholar
Karg, H., Drechsel, P., Akoto-Danso, E. K., Glaser, R., Nyarko, G., & Buerkert, A. (2016). Foodsheds and city region food systems in two West African cities. Sustainability, 8(12), 1175.Google Scholar
Kulak, M., Graves, A., & Chatterton, J. (2013). Reducing greenhouse gas emissions with urban agriculture: A life cycle assessment perspective. Landscape and Urban Planning, 111, 6878.Google Scholar
Landert, J., Schader, C., Moschitz, H., & Stolze, M. (2017). A holistic sustainability assessment method for urban food system governance. Sustainability, 9(4), 490.Google Scholar
Lang, U. (2014). Cultivating the sustainable city: Urban agriculture policies and gardening projects in Minneapolis, Minnesota. Urban Geography, 35, 477485.Google Scholar
Leray, L., Sahakian, M., & Erkman., S. (2016). Understanding household food metabolism: Relating micro-level material flow analysis to consumption practices. Journal of Cleaner Production, 125, 4455.Google Scholar
Lerner, A. M., & Eakin, H. (2011). An obsolete dichotomy? Rethinking the rural-urban interface in terms of food security and production in the Global South. The Geographical Journal, 177, 311320.Google Scholar
Lerner, A. M., Eakin, H., & Sweeney, S. (2013). Understanding peri-urban maize production through an examination of household livelihoods in the Toluca Metropolitan Area, Mexico. Journal of Rural Studies, 30, 5263.Google Scholar
Lin, B. B., Philpott, S. M., & Jha, S. (2015). The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic and Applied Ecology, 16, 189201.Google Scholar
López-Ridaura, S., Masera, O., & Astier, M. (2002). Evaluating the sustainability of complex socio-environmental systems: The MESMIS framework. Ecological Indicators, 2, 135148.Google Scholar
Losada, H., Vieyra, J., Soriano, R., Bennett, R., Cortés, J., & Zavaleta, P. (2001). Assessing the sustainability of a terraced agroecosystem for production of nopal vegetable (Opuntia ficus-indica) in metropolitan Mexico City. American Journal of Alternative Agriculture, 16(3), 98105.Google Scholar
Madaleno, I. M., & Gurovich, A. (2004). “Urban versus rural” no longer matches reality: An early public agro-residential development in periurban Santiago, Chile. Cities, 21, 513526.Google Scholar
Marshall, F., Dolley, J., Randhawa, P., et al. (2017). Why Peri-urban Ecosystem Services Matter for Urban Policy (Policy Briefing). ESPA briefing. Brighton: STEPS Centre.Google Scholar
McClintock, N. (2014). Radical, reformist, and garden-variety neoliberal: Coming to terms with urban agriculture’s contradictions. Local Environment, 19(2), 147171.Google Scholar
McClintock, N., Cooper, J., & Khandeshi, S. (2013). Assessing the potential contribution of vacant land to urban vegetable production and consumption in Oakland, California. Landscape and Urban Planning, 111, 4658.Google Scholar
Meinherz, F., Fritz, L., & Schneider, F. (2020). How Values Play into Sustainability Assessments: Challenges and a Possible Way Forward. In Binder, C. R., Massaro, E., & Wyss, R. (eds.), Sustainability Assessment in Urban Systems. Cambridge University Press, pp. 6586.Google Scholar
Mendez, M., Ramirez, L., & Alzate, A. (2005) La práctica de la agricultura urbana como expresión de emergencia de nuevas ruralidades: reflexiones en torno a la evidencia empírica. Cuadernos de Desarrollo Rural, 55, 5170.Google Scholar
Mougeot, L. J. (2005). Agropolis: The Social, Political and Environmental Dimensions of Urban Agriculture. IDRC/London: Earthscan.Google Scholar
Olsson, E., Kerselaers, E., Søderkvist Kristensen, L., Primdahl, J., Rogge, E., & Wästfelt, A. (2016). Peri-urban food production and its relation to urban resilience. Sustainability, 8, 1340.Google Scholar
Orsini, F., Kahane, R., Nono-Womdim, R., & Gianquinto, G. (2013). Urban agriculture in the developing world: A review. Agronomy for Sustainable Development, 33, 695720.Google Scholar
Ortega Cerdà, M., & Rivera-Ferre, M. G. (2010). Indicadores internacionales de Soberanía Alimentaria. Nuevas herramientas para una nueva agricultura. Revibec: revista de la Red Iberoamericana de Economia Ecológica, 14, 5377.Google Scholar
Pearson, L. J., Pearson, L., & Pearson, C. J. (2010.) Sustainable urban agriculture: Stocktake and opportunities. International Journal of Agricultural Sustainability, 8, 719.Google Scholar
Pérez-Martinez, M. E. (2016). Las territorialidades urbano rurales contemporaneas: un debate epistémico y metodológico para su abordaje. Bitácora, 26(2), 103112.Google Scholar
Pickerill, J. (2008). The surprising sense of hope. Antipode, 40(3), 482487.Google Scholar
Plessz, M., Dubuisson-Quellier, S., Gojard, S., & Barrey, S. (2016). How consumption prescriptions affect food practices: Assessing the roles of household resources and life-course events. Journal of Consumer Culture, 16(1), 101123.Google Scholar
Poulsen, M. N. (2017). Cultivating citizenship, equity, and social inclusion? Putting civic agriculture into practice through urban farming. Agriculture and Human Values, 34, 135148.Google Scholar
Poulsen, M. N., McNab, P. R., Clayton, M. L., & Neff, R. A. (2015). A systematic review of urban agriculture and food security impacts in low-income countries. Food Policy, 55, 131146.Google Scholar
Quon, S. (1999). Planning for Urban Agriculture: A Review of Tools and Strategies for Urban Planners. Cities Feeding People series, report 28. Ottawa: International Development Research Centre.Google Scholar
Rabinovitch, J., & Schmetzer, H. (1997). Urban agriculture: Food, jobs and sustainable cities. Agriculture and Rural Development 4(2), 4445.Google Scholar
Ringenbach, J., Valcourt, M., & Wang, W. (2013) Mapping the Potential for Urban Agriculture in Worcester: A Land Inventory Assessment. Interactive Qualifying Projects (All Departments). 2644. Worcester Polytechnic Institute.Google Scholar
Saha, M., & Eckelman, M. J. (2017). Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landscape and Urban Planning, 165, 130141.Google Scholar
Sahakian, M., Saloma, C., & Erkman, S. (Eds.) (2016). Food Consumption in the City: Practices and Patterns in Urban Asia and the Pacific. Oxford: Routledge.Google Scholar
Saldivar-Tanaka, L., & Krasny, M. E. (2004). Culturing community development, neighborhood open space, and civic agriculture: The case of Latino community gardens in New York City. Agriculture and Human Values, 21(4), 399412.Google Scholar
Savoie-Roskos, M. R., Wengreen, H., & Durward, C. (2017). Increasing fruit and vegetable intake among children and youth through gardening-based interventions: A systematic review. Journal of the Academy of Nutrition and Dietetics, 117(2), 240250.Google Scholar
Schmidt, S., Magigi, W., & Godfrey, B. (2015). The organization of urban agriculture: Farmer associations and urbanization in Tanzania. Cities, 42, 153159.Google Scholar
Shinew, K. J., Glover, T. D., & Parry, D. C. (2004). Leisure spaces as potential sites for interracial interaction: Community gardens in urban areas. Journal of Leisure Research, 36(3), 336.Google Scholar
Soler Montiel, M., & Rivera Ferre, M. (2010). Agricultura urbana, sostenibilidad y soberanía alimentaria: hacia una propuesta de indicadores desde la agroecología. Actas del X Congreso Español de Sociología FES (Federación Española de Sociología), Sociología y sociedad en España.Google Scholar
Thebo, A. L., Drechsel, P., & Lambin, E. F. (2014). Global assessment of urban and peri-urban agriculture: Irrigated and rainfed croplands. Environmental Research Letters, 9(114002).Google Scholar
Teo, T. A., & Wu, H. M. (2017). Analysis of land cover classification using multi-wavelength LiDAR system. Applied Sciences, 7(7), 663.Google Scholar
Tornaghi, C. (2014). Critical geography of urban agriculture. Progress in Human Geography, 38, 551567.Google Scholar
Tornaghi, C., & Van Dyck, B. (2015). Research-informed gardening activism: Steering the public food and land agenda. Local Environment, 20(10), 12471264.Google Scholar
Van Veenhuizen, René (Ed.) (2006). Cities Farming for the Future: Urban Agriculture for Green and Productive Cities. RUAF Foundation, IDRC and IIRR.Google Scholar
Warren, E., Hawkesworth, S., & Knai, C. (2015). Investigating the association between urban agriculture and food security, dietary diversity, and nutritional status: A systematic literature review. Food Policy, 53, 5466.Google Scholar
Zezza, A., & Tasciotti, L. (2010). Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries. Food Policy, 35, 265273.Google Scholar
Zundritsch, P. (2018). Cartography of Potential Sites for Urban Gardening in Lausanne. Semester project, École Polytechnique Fédérale de Lausanne.Google Scholar

References

Allen, T. (1977). Managing the Flow of Technology. Cambridge, MA: MIT Press.Google Scholar
Alonso, W. (1964). Location and Land Use: Toward a General Theory of Land Rent. Cambridge, MA: Harvard University Press.Google Scholar
Ayeni, M. A. O. (1976). The city system and the use of entropy in urban analysis. Urban Ecology, 2 (1), 3353.Google Scholar
Batty, M., Morphet, R., Masucci, P., & Stanilov, K. (2014). Entropy, complexity, and spatial information. Journal of Geographical Systems, 16(4), 363385.Google Scholar
Brooks, R. (1999). Cambrian Intelligence: The Early History of the New AI. Cambridge, MA: MIT Press.Google Scholar
Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 719.Google Scholar
Clark, A., (1997). Being There: Putting Brain, Body, and World Together Again. Cambridge, MA: MIT Press.Google Scholar
Claudel, M., Massaro, E., Santi, P., Murray, F., & Ratti, C. (2017). An exploration of collaborative scientific production at MIT through spatial organization and institutional affiliation. PLoS ONE, 12(6), e0179334.Google Scholar
Cohen, M. (2017). A systematic review of urban sustainability assessment literature. Sustainability, 9(11), 2048.Google Scholar
dos Santos, R. V., Ribeiro, F. L., & Martinez, A. S. (2015). Models for Allee effect based on physical principles. Journal of Theoretical Biology, 385, 143152.Google Scholar
Farber, S., O’Kelly, M., Miller, H. J., & Neutens, T. (2015). Measuring segregation using patterns of daily travel behavior: A social interaction-based model of exposure. Journal of Transport Geography 49, 2638.Google Scholar
Faria, A., & Krafta, R. (2003). Representing urban cognitive structure through spatial differentiation, in Proceedings of 4th Space Syntax International Symposium, pp. 531–518, London: UCL Press.Google Scholar
Franklin, S. (1995). Artificial Minds. Cambridge, MA: MIT Press.Google Scholar
Gibson, J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton-Mifflin.Google Scholar
Glenberg, A. M., & Robertson, D. A. (1999). Indexical understanding of instructions. Discourse Processes, 28(1), 126.Google Scholar
Haken, H, & Portugali, J. (2015). Information Adaptation: The Interplay between Shannon Information and Semantic Information in Cognition. New York: Springer.Google Scholar
Hansen, W. G. (1959). How accessibility shapes land use. Journal of the American Institute of Planners, 25(2), 7376.Google Scholar
Hashemian, B., Massaro, E., Bojic, I., Arias, J. M., Sobolevsky, S., & Ratti, C. (2017). Socioeconomic characterization of regions through the lens of individual financial transactions. PLoS ONE, 12(11), e0187031.Google Scholar
Hillier, B. (1996). Space Is the Machine. Cambridge, UK: Cambridge University Press.Google Scholar
Hodges, B. H., & Baron, R. M. (1992). Values as constraints on affordances: perceiving and acting properly. Journal for the Theory of Social Behaviour, 22(3), 263294.Google Scholar
Iverson, J. M., & Goldin-Meadow, S. (1998). Why people gesture when they speak. Nature, 396(6708), 228.Google Scholar
Kintsch, W. (1970). Memory and Cognition. New York: John Wiley and Sons.Google Scholar
Kirsh, D. & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18(4), 513549.Google Scholar
Kolchinsky, A., & Wolpert, D. H. (2018). Semantic information, autonomous agency and non-equilibrium statistical physics. Interface Focus, 8: 20180041. http://dx.doi.org/10.1098/rsfs.2018.0041.Google Scholar
Kosslyn, S. M. (1994). Image and Brain: The Resolution of the Imagery Debate. Cambridge, MA: MIT Press.Google Scholar
Krafta, R., Netto, V. M., & Lima, L. (2011). Urban built form grows critical. Cybergeo: European Journal of Geography, 565. DOI:10.4000/cybergeo.24787.Google Scholar
Krauss, R. M. (1998). Why do we gesture when we speak? Current Directions in Psychological Science, 7 (2), 5460.Google Scholar
Lakoff, G., & Johnson, M. (1999). Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought. New York: Basic Books.Google Scholar
Lanchier, N., & Scarlatos, S. (2013). Fixation in the one-dimensional Axelrod model. The Annals of Applied Probability, 23(6) 25382559.Google Scholar
Luhmann, N. (1995). Social Systems. Stanford University Press.Google Scholar
Marchettini, N., Pulselli, F. M., & Tiezzi, E. (2006). Entropy and the city. WIT Transactions on Ecology and the Environment, 93. DOI:10.2495/SC060251.Google Scholar
Michaelian, K., & Sutton, J. (2013). Distributed cognition and memory research: History and current directions. Review of Philosophy and Psychology, 4, 124.Google Scholar
Neisser, U. (1994). Multiple systems: A new approach to cognitive theory. European Journal of Cognitive Psychology, 6(3) 225241.Google Scholar
Netto, V. M. (2008). Practice, space, and the duality of meaning. Environment and Planning D: Society and Space, 26(2), 359379.Google Scholar
Netto, V. M. (2017). The Social Fabric of Cities. New York: Routledge.Google Scholar
Netto, V. M., Brigatti, E., Meirelles, J., et al. (2018) Cities, from information to interaction. Entropy, 20(11), 834. https://doi.org/10.3390/e20110834.Google Scholar
Pantaleone, J. (2002). Synchronization of metronomes. American Journal of Physics, 70(10), 9921000.Google Scholar
Parsons, T. (1968). The Structure of Social Action. New York: The Free Press.Google Scholar
Passini, R. (1992). Wayfinding in Architecture. New York: Van Nostrand Reinhold.Google Scholar
Pfeifer, R., & Scheier, C. (1999). Understanding Intelligence. Cambridge, MA: MIT Press.Google Scholar
Portugali, J. (2011). Complexity, Cognition and the City. New York: Springer.Google Scholar
Prigogine, I., & Stengers, I. (1984). Order out of Chaos: Man’s New Dialogue with Nature. New York: Bantam Books.Google Scholar
Purvis, B., Mao, Y., & Robinson, D. (2017). Thermodynamic entropy as an indicator for urban sustainability? Procedia Engineering, 198, 802812.Google Scholar
Ribeiro, F. L. (2015). A non-phenomenological model of competition and cooperation to explain population growth behaviors. Bulletin of Mathematical Biology, 77(3), 409433.Google Scholar
Ribeiro, F. L., & Ribeiro, K. N. (2015). A one dimensional model of population growth. Physica A. Statistical Mechanics and Its Applications, 434, 201210.Google Scholar
Ribeiro, F. L., Meirelles, J., Ferreira, F. F., & Neto, R. C. (2017). A model of urban scaling laws based on distance-dependent interactions. Royal Society Open Science, 4, Article ID 160926.Google Scholar
Rosch, E. (1978). Principles of categorization. In Rosch, E. and Lloyd, B. (eds.), Cognition and Categorization. Hillsdale: Lawrence Erlbaum, pp. 2849.Google Scholar
Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2), 143186.Google Scholar
Schelling, T. C. (1978). Micromotives and Macrobehavior. New York: Norton.Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623656.Google Scholar
Singh, R., Murty, H., Gupta, S., & Dikshit, A. (2012). An overview of sustainability assessment methodologies. Ecological Indicators, 15(1), 281299.Google Scholar
Strogatz, S. (2012). Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life. Hachette, UK: Hachette Books.Google Scholar
United Nations. (2011). Cities and Climate Change: Global Report on Human Settlements 2011. London: Earthscan.Google Scholar
Vygotsky, L. (1978). Mind in Society: The Development of Higher Psychological Processes., Cambridge, MA: Harvard University Press.Google Scholar
Weber, M. (1978). Economy and Society, vol. 1. Berkeley: University of California Press.Google Scholar
Wilson, A. G. (2013/1970). Entropy in Urban and Regional Modelling (Routledge Revivals). London: Routledge. [Original: 1970, London: Pion] .Google Scholar
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625636.Google Scholar
Wittgenstein, L. (2001). Philosophical Investigations, 3rd edition. Oxford, London: Blackwell Publishers.Google Scholar
Xuan, W., Jieqiong, S., Shan, S., & Yan, Z. (2012). Urban ecological regulation based on information entropy at the town scale. Procedia Environmental Sciences, 13, 11551164.Google Scholar

References

Ayres, R. U., & Simonis, U. E. (1994). Industrial Metabolism: Restructuring for Sustainable Development. New York: United Nations University.Google Scholar
Frostell, B. (2013). Life cycle thinking for improved resource management: LCA or? In Kaufman, J. & Lee, K. M. (eds.), Handbook of Sustainable Engineering, Dordrecht, Springer Verlag, pp. 837857.Google Scholar
Global Footprint Network (2018). Carbon footprint. www.footprintnetwork.org/our-work/climate-change/ (accessed 20.4.18).Google Scholar
Graedel, T. E., & Allenby, B. R. (1995). Industrial Ecology. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities: Exploring ICT solutions for reduced energy use in cities. Environmental Modelling & Software, 56, 5262.Google Scholar
Martinez-Alier, J., & Muradian, R. (2015). Taking stock: the keystones of ecological economics. In Martinez-Alier, J. & Muradian, R. (eds.), Handbook of Ecological Economics. Cheltenham: Edward Elgar, pp. 125.Google Scholar
Miller, R. E., & Blair, P. D. (2009). Input-Output Analysis: Foundations and Extensions. Cambridge University Press.Google Scholar
Mol, A. P., & Sonnenfeld, D. A. (2000). Ecological Modernisation around the World: Perspectives and Critical Debates (Vol. 11, No. 5). Bingley, West Yorkshire, UK: Emerald Group Publishing, pp. 475476.Google Scholar
Naess, A. (1989). Ecology, Community, Lifestyle: Outline of an Ecosphy. Translated and revised by David Rothenberg. Cambridge: Cambridge University Press.Google Scholar
Pettit, C. J., Raymond, C. M., Bryan, B. A., & Lewis, H. (2011). Identifying strengths and weaknesses of landscape visualisation for effective communication of future alternatives. Landscape and Urban Planning, 100(3), 231241.Google Scholar
Ranhagen, U. (2012). 4 big leaps and 20 small steps. Conceptual guidelines on sustainable spatial planning. Swedish Energy Agency.Google Scholar
Ranhagen, U., & Frostell, B. (2014). Eco-cycle Model 2.0. for Stockholm Royal Seaport City District: Feasibility Study Final Report. Stockholm: Royal Institute of Technology, Dept of Architecture and the Built Environment: Urban and Regional Studies. TRITA-SoM 2014-10.Google Scholar
Ranhagen, U., & Groth, K. (2012). The SymbioCity Approach: A Conceptual Framework for Sustainable Urban Development. Stockholm: SKL International.Google Scholar
Ranhagen, U., et al. (2017). Co-creation in urban station communities. Mistra Urban Futures Report, 2.Google Scholar
Rockström, J., Steffen, W., Noone, K., et al. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2): 32. www.ecologyandsociety.org/vol14/iss2/art32/.Google Scholar
Salter, J. D., Campbell, C., Journeay, M., & Sheppard, S. R. (2009). The digital workshop: Exploring the use of interactive and immersive visualisation tools in participatory planning. Journal of environmental management, 90(6), 20902101.Google Scholar
Singer, P. (1972). Famine, affluence, and morality. Philosophy & Public Affairs, 229243.Google Scholar
Steffen, W., Richardson, K., Rockström, J., et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855.Google Scholar
Svensson, T., Ranhagen, U., Håkansson, M., et al. (2018). Den uthålliga regionen – Energifrågans hantering i samhällsplanering utanför större tillväxtområden (in Swedish with English summary), Swedish Energy Agency, E2B2 report 2018:15.Google Scholar
Wackernagel, M., & Rees, W. (1996). Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island, BC: New Society Publishers.Google Scholar

References

Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075), 462465.Google Scholar
Dixon, S., Irshad, H., Pankratz, D. M., and Bornstein, J. (2018). The 2019 Deloitte city mobility index: Gauging Global Readiness for the Future of Mobility. www2.deloitte.com/content/dam/Deloitte/br/Documents/consumer-business/City-Mobility-Index-2019.pdf.Google Scholar
Fugiglando, U., Massaro, E., Santi, P., et al. (2018). Driving behavior analysis through can bus data in an uncontrolled environment. IEEE Transactions on Intelligent Transportation Systems, 99, 112.Google Scholar
González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779782.Google Scholar
Huo, H., Wu, Y., & Wang, M. (2009). Total versus urban: Well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems. Atmospheric Environment, 43(10), 17961804.Google Scholar
Martin, C. J. (2016). The sharing economy: A pathway to sustainability or a nightmarish form of neoliberal capitalism? Ecological Economics, 121, 149159.Google Scholar
Massaro, E., Ahn, C., Ratti, C., et al. (2017). The car as an ambient sensing platform [Point of View]. Proceedings of the IEEE, 105(1), 37.Google Scholar
Massaro, E. (2017, November). A study of ride sharing opportunities in the City of Santiago de Chile. In Bodrunova, S. S. (ed.), International Conference on Internet Science. Cham: Springer, pp. 159173.Google Scholar
Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H., and Ratti, C. (2014). Quantifying the benefits of vehicle pooling with shareability networks. Proceedings of the National Academy of Sciences, 111(37), 1329013294.Google Scholar
Tachet, R., Sagarra, O., Santi, P., et al. (2017). Scaling law of urban ride sharing. Scientific Reports, 7(1).Google Scholar

References

Ajelli, M. (2017). Modeling mosquito-borne diseases in complex urban environments. Acta Tropica, 176, 332334. https://doi.org/10.1016/j.actatropica.2017.08.026Google Scholar
Ajelli, M., Moise, I. K., Hutchings, T. C. S. G., et al. (2017). Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Neglected Tropical Diseases, 11(9), e0005851. https://doi.org/10.1371/journal.pntd.0005851.Google Scholar
Bagnoli, F., Massaro, E., & Guazzini, A. (2012). Community-detection cellular automata with local and long-range connectivity. In International Conference on Cellular Automata, pp. 204213. Berlin/ Heidelberg: Springer.Google Scholar
Balcan, D., Colizza, V., Goncalves, B., Hu, H., Ramasco, J. J., & Vespignani, A. (2009). Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences, 106(51), 2148421489. https://doi.org/10.1073/pnas.0906910106.Google Scholar
Barmak, D. H., Dorso, C. O., Otero, M., & Solari, H. G. (2011). Dengue epidemics and human mobility. Physical Review E, 84(1). https://doi.org/10.1103/PhysRevE.84.011901.Google Scholar
Dorigatti, I., Hamlet, A., Aguas, R., et al. (2017). International risk of yellow fever spread from the ongoing outbreak in Brazil, December 2016 to May 2017. Eurosurveillance, 22(28). https://doi.org/10.2807/1560–7917.ES.2017.22.28.30572.Google Scholar
Esteva, L., & Vargas, C. (1998). Analysis of a dengue disease transmission model. Mathematical Biosciences, 150(2), 131151. https://doi.org/10.1016/S0025-5564(98)10003–2.Google Scholar
Esteva, L., & Vargas, C. (1999). A model for dengue disease with variable human population. Journal of Mathematical Biology, 38(3), 220240. https://doi.org/10.1007/s002850050147.Google Scholar
Esteva, L., & Vargas, C. (2000). Influence of vertical and mechanical transmission on the dynamics of dengue disease. Mathematical Biosciences, 167(1), 5164. https://doi.org/10.1016/S0025-5564(00)00024–9.Google Scholar
Ferguson, N. M., Cucunuba, Z. M., Dorigatti, I., et al. (2016). Countering the Zika epidemic in Latin America. Science, 353(6297), 353354. https://doi.org/10.1126/science.aag0219.Google Scholar
Fischer, M., & Staples, E. (2014). Chikungunya virus spreads in the Americas – Caribbean and South America, 2013–2014. Morbidity and Mortality Weekly Report, 63(22), 500501.Google Scholar
Focks, D. A., Haile, D. G., Daniels, E., & Mount, G. A. (1993). Dynamic life table model for Aedes aegypti (Diptera: Culicidae): Analysis of the literature and model development. Journal of Medical Entomology, 30, 10031017.Google Scholar
Griffin, J. T., Hollingsworth, T. D., Okell, L. C., et al. (2010). Reducing Plasmodium falciparum malaria transmission in Africa: A model-based evaluation of intervention strategies. PLoS Medicine, 7(8), e1000324. https://doi.org/10.1371/journal.pmed.1000324.Google Scholar
Grubaugh, N. D., Ladner, J. T., Kraemer, M. U. G., et al. (2017). Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 546(7658), 401405. https://doi.org/10.1038/nature22400.Google Scholar
Hartley, L. M., Donnelly, C. A., & Garnett, G. P. (2002). The seasonal pattern of dengue in endemic areas: Mathematical models of mechanisms. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96(4), 387397. https://doi.org/10.1016/S0035-9203(02)90371–8.Google Scholar
Karl, S., Halder, N., Kelso, J. K., et al. (2014). A spatial simulation model for dengue virus infection in urban areas. BMC Infectious Diseases, 14(1). https://doi.org/10.1186/1471-2334-14-447.Google Scholar
Keeling, M. J., & Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton: Princeton University Press.Google Scholar
Kraemer, M. U., Sinka, M. E., Duda, K. A., et al. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 4. https://doi.org/10.7554/eLife.08347.Google Scholar
Lessler, J., Chaisson, L. H., Kucirka, L. M., et al. (2016). Assessing the global threat from Zika virus. Science, 353(6300), aaf8160–aaf8160. https://doi.org/10.1126/science.aaf8160.Google Scholar
Likos, A., Griffin, I., Bingham, A. M., et al. (2016). Local mosquito-borne transmission of Zika virus: Miami-Dade and Broward Counties, Florida, June–August 2016. MMWR. Morbidity and Mortality Weekly Report, 65(38), 10321038. https://doi.org/10.15585/mmwr.mm6538e1.Google Scholar
Mammen, M. P., Pimgate, C., Koenraadt, C. J. M., et al. (2008). Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Medicine, 5(11), e205. https://doi.org/10.1371/journal.pmed.0050205.Google Scholar
Massaro, E., Ganin, A., Perra, N., Linkov, I., & Vespignani, A. (2018). Resilience management during large-scale epidemic outbreaks. Scientific Reports, 8(1).Google Scholar
Neiderud, C.-J. (2015). How urbanization affects the epidemiology of emerging infectious diseases. Infection Ecology & Epidemiology, 5(1), 27060. https://doi.org/10.3402/iee.v5.27060Google Scholar
Otero, M., Schweigmann, N., & Solari, H. G. (2008). A stochastic spatial dynamical model for Aedes Aegypti. Bulletin of Mathematical Biology, 70(5), 12971325. https://doi.org/10.1007/s11538-008–9300-y.Google Scholar
Otero, M., Barmak, D. H., Dorso, C. O., Solari, H. G., & Natiello, M. A. (2011). Modeling dengue outbreaks. Mathematical Biosciences, 232, 8795.Google Scholar
Paules, C. I., & Fauci, A. S. (2017). Yellow fever: Once again on the radar screen in the Americas. New England Journal of Medicine, 376(15), 13971399. https://doi.org/10.1056/NEJMp1702172.Google Scholar
Poletti, P., Messeri, G., Ajelli, M., Vallorani, R., Rizzo, C., & Merler, S. (2011). Transmission potential of chikungunya virus and control measures: The case of Italy. PLoS ONE, 6(5), e18860. https://doi.org/10.1371/journal.pone.0018860.Google Scholar
Rezza, G., Nicoletti, L., Angelini, R., et al. (2007). Infection with chikungunya virus in Italy: An outbreak in a temperate region. The Lancet, 370(9602), 18401846. https://doi.org/10.1016/S0140-6736(07)61779–6.Google Scholar
Robert, M. A., Christofferson, R. C., Silva, N. J., Vasquez, C., Mores, C. N., & Wearing, H. J. (2016). Modeling mosquito-borne disease spread in US urbanized areas: the case of dengue in Miami. PLoS ONE, 11(8), e0161365.Google Scholar
Salje, H., Lessler, J., Paul, K. K., et al. (2016). How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proceedings of the National Academy of Sciences, 113(47), 1342013425. https://doi.org/10.1073/pnas.1611391113.Google Scholar
Stoddard, S. T., Forshey, B. M., Morrison, A. C., et al. (2013). House-to-house human movement drives dengue virus transmission. Proceedings of the National Academy of Sciences, 110(3), 994999. https://doi.org/10.1073/pnas.1213349110.Google Scholar
Stoddard, S. T., Morrison, A. C., Vazquez-Prokopec, G. M., et al. (2009). The role of human movement in the transmission of vector-borne pathogens. PLoS Neglected Tropical Diseases, 3(7), e481. https://doi.org/10.1371/journal.pntd.0000481.Google Scholar
Teurlai, M., Huy, R., Cazelles, B., Duboz, R., Baehr, C., & Vong, S. (2012). Can human movements explain heterogeneous propagation of dengue fever in Cambodia? PLoS Neglected Tropical Diseases, 6(12), e1957. https://doi.org/10.1371/journal.pntd.0001957.Google Scholar
United Nations, Department of Economic and Social Affairs, & Population Division. (2014). World urbanization prospects: the 2014 revision.Google Scholar
Wesolowski, A., Eagle, N., Tatem, A. J., et al. (2012). Quantifying the impact of human mobility on malaria. Science, 338(6104), 267270. https://doi.org/10.1126/science.1223467.Google Scholar
Wesolowski, Amy, Qureshi, T., Boni, M. F., et al. (2015). Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences, 112(38), 1188711892. https://doi.org/10.1073/pnas.1504964112.Google Scholar
World Health Organization & United Nations Human Settlements Programme (Eds.) (2010). Hidden Cities: Unmasking and Overcoming Health Inequities in Urban Settings. Kobe, Japan: World Health Organization; UN-HABITAT.Google Scholar
World Health Organization. (2016). World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals. World Health Organization.Google Scholar
Yamey, G., Schäferhoff, M., Aars, O. K., et al. (2017). Financing of international collective action for epidemic and pandemic preparedness. The Lancet Global Health, 5(8), e742e744. https://doi.org/10.1016/S2214-109X(17)30203–6.Google Scholar
Zhang, Q., Sun, K., Chinazzi, M., et al. (2017). Spread of Zika virus in the Americas. Proceedings of the National Academy of Sciences of the United States of Americas, 114(22), E4334E4343. https://doi.org/10.1073/pnas.1620161114.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×