Published online by Cambridge University Press: 25 June 2025
We completely characterize genus-0 K-theoretic Gromov–Witten invariants of a compact complex algebraic manifold in terms of cohomological Gromov– Witten invariants of this manifold. This is done by applying (a virtual version of) the Kawasaki–Hirzebruch–Riemann–Roch formula for expressing holomorphic Euler characteristics of orbibundles on moduli spaces of genus-0 stable maps, analyzing the sophisticated combinatorial structure of inertia stacks of such moduli spaces, and employing various quantum Riemann–Roch formulas from fake (i.e. orbifold–ignorant) quantum K-theory of manifolds and orbifolds (formulas, either previously known from works of Coates– Givental, Tseng, and Coates–Corti–Iritani–Tseng, or newly developed for this purpose by Tonita). The ultimate formulation combines properties of overruled Lagrangian cones in symplectic loop spaces (the language that has become traditional in description of generating functions of genus-0 Gromov-Witten theory) with a novel framework of adelic characterization of such cones. As an application, we prove that tangent spaces of the overruled Lagrangian cones of quantum K-theory carry a natural structure of modules over the algebra of finite-difference operators in Novikov's variables. As another application, we compute one of such tangent spaces for each of the complete intersections given by equations of degrees l1; ....; lk in a complex projective space of dimension.
0. Motivation
K-theoretic Gromov–Witten invariants of a compact complex algebraic manifold X are defined as holomorphic Euler characteristics of various interesting vector bundles over moduli spaces of stable maps of compact complex curves to X.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.