Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T05:11:01.507Z Has data issue: false hasContentIssue false

Part I - Foundations

Published online by Cambridge University Press:  08 November 2023

Louis Tay
Affiliation:
Purdue University, Indiana
Sang Eun Woo
Affiliation:
Purdue University, Indiana
Tara Behrend
Affiliation:
Purdue University, Indiana
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ahmad, H., Arif, A., Khattak, A. M., Habib, A., Asghar, M. Z., & Shah, B. (2020, January). Applying deep neural networks for predicting dark triad personality trait of online users. In 2020 International Conference on Information Networking (ICOIN) (pp. 102105). IEEE.CrossRefGoogle Scholar
Akhtar, R., Winsborough, D., Ort, U., Johnson, A., & Chamorro-Premuzic, T. (2018). Detecting the dark side of personality using social media status updates. Personality and Individual Differences, 132, 9097. https://doi.org/10.1016/j.paid.2018.05.026CrossRefGoogle Scholar
Altman, N. S. (1992). An introduction to Kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175185. https://doi.org/10.1080/00031305.1992.10475879Google Scholar
Angelov, D. (2020). Top2Vec: Distributed representations of topics. ArXiv:2008.09470 [Cs, Stat]. http://arxiv.org/abs/2008.09470Google Scholar
Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., & Wu, A. Y. (1998). An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM (JACM), 45(6), 891923. https://doi.org/10.1145/293347.293348CrossRefGoogle Scholar
Batista, G., & Monard, M.-C. (2002). A study of K-nearest neighbour as an imputation method. In International Conference on Health Information Science.Google Scholar
Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers Inc.CrossRefGoogle Scholar
Blei, D. M., Jordan, M. I., Griffiths, T. L., & Tenenbaum, J. B. (2003). Hierarchical topic models and the nested Chinese restaurant process. Proceedings of the 16th International Conference on Neural Information Processing Systems, 17–24.Google Scholar
Bontempi, G., Birattari, M., & Bersini, H. (1999). Lazy learning for local modelling and control design. International Journal of Control, 72(7–8), 643658. https://doi.org/10.1080/002071799220830CrossRefGoogle Scholar
Braun, M. T., & Kuljanin, G. (2015). Big data and the challenge of construct validity. Industrial and Organizational Psychology: Perspectives on Science and Practice, 8(4), 521527. https://doi.org/10.1017/iop.2015.77CrossRefGoogle Scholar
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123140.CrossRefGoogle Scholar
Breiman, L. (2001). Random forests. Machine Learning, 45, 532. https://doi.org/10.1023/A:1010933404324CrossRefGoogle Scholar
Brownlee, J. (2020, September 21). Multi-core machine learning in Python with Scikit-Learn. Machine Learning Mastery. https://machinelearningmastery.com/multi-core-machine-learning-in-python/Google Scholar
Calanna, P., Lauriola, M., Saggino, A., Tommasi, M., & Furlan, S. (2020). Using a supervised machine learning algorithm for detecting faking good in a personality self‐report. International Journal of Selection and Assessment, 28(2), 176185. https://doi.org/10.1111/ijsa.12279CrossRefGoogle Scholar
Cardaioli, M., Cecconello, S., Conti, M., Pajola, L., & Turrin, F. (2020). Fake news spreaders profiling through behavioural analysis. In Working notes of CLEF 2020 – Conference and Labs of the Evaluation Forum, Thessaloniki, Greece, September 22–25, 2020, vol. 2696 of CEUR Workshop Proceedings. CEUR-WS.orgGoogle Scholar
Chaney, A., & Blei, D. (2012, May). Visualizing topic models. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 6, No. 1).CrossRefGoogle Scholar
Chekroud, A. M., Gueorguieva, R., Krumholz, H. M., Trivedi, M. H., Krystal, J. H., & McCarthy, G. (2017). Reevaluating the efficacy and predictability of antidepressant treatments: A symptom clustering approach. JAMA Psychiatry, 74(4), 370378. https://doi.org/10.1001/jamapsychiatry.2017.0025CrossRefGoogle ScholarPubMed
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794).CrossRefGoogle Scholar
Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychological Assessment, 4(1), 513. https://doi.org/10.1037/1040-3590.4.1.5CrossRefGoogle Scholar
Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1996). Support vector regression machines. Advances in Neural Information Processing Systems, 155–161.Google Scholar
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407499. https://doi.org/10.1214/009053604000000067CrossRefGoogle Scholar
Fix, E., & Hodges, J. (1951). Discriminatory analysis – nonparametric discrimination: Consistency properties. Technical Report 21-49-004,4, U.S. Air Force, School of Aviation Medicine, Randolph Field, TX.Google Scholar
Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 11891232. https://doi.org/10.1214/aos/1013203451CrossRefGoogle Scholar
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367378. https://doi.org/10.1016/S0167–9473(01)00065-2CrossRefGoogle Scholar
Fujimoto, N. (2008). Faster matrix-vector multiplication on GeForce 8800GTX. 2008 IEEE International Symposium on Parallel and Distributed Processing, 1–8. https://doi.org/10.1109/IPDPS.2008.4536350CrossRefGoogle Scholar
Géron, A. (2019). Hands-on machine learning with Scikit-Learn & TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc.Google Scholar
Gradus, J. L., Rosellini, A. J., Horváth-Puhó, E., Street, A. E., Galatzer-Levy, I., Jiang, T., Lash, T. L., & Sørensen, H. T. (2020). Prediction of sex-specific suicide risk using machine learning and single-payer health care registry data from Denmark. JAMA Psychiatry, 77(1), 2534. https://doi.org/10.1001/jamapsychiatry.2019.2905CrossRefGoogle Scholar
Groves, R. M., Fowler, F. J. Jr, Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2011). Survey methodology (Vol. 561). John Wiley & Sons.Google Scholar
Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 9931001.CrossRefGoogle Scholar
Hassanien, A. E., Kilany, M., Houssein, E. H., & AlQaheri, H. (2018). Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression. Biomedical Signal Processing and Control, 45, 182191. https://doi.org/10.1016/j.bspc.2018.05.039CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Science & Business Media.CrossRefGoogle Scholar
Hickman, L., Bosch, N., Ng, V., Saef, R., Tay, L., & Woo, S. E. (2022). Automated video interview personality assessments: Reliability, validity, and generalizability investigations. Journal of Applied Psychology, 107(8), 13231351. https://doi.org/10.1037/apl0000695CrossRefGoogle ScholarPubMed
Hickman, L., Song, Q. C., & Woo, S. E. (2022). Evaluating data. In Murphy, K. R. (Ed.), Data, methods and theory in the organizational sciences (pp. 98123). Society of Industrial and Organizational Psychology Organizational Frontiers Series. Routledge.CrossRefGoogle Scholar
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 5567. https://doi.org/10.1080/00401706.1970.10488634CrossRefGoogle Scholar
IBM Corp. (2020). IBM SPSS statistics for Windows, version 27.0. IBM Corp.Google Scholar
James, G., Witten, D., Hastie, T., & Tibshirani, R. (Eds.). (2013). An introduction to statistical learning: With applications in R. Springer.CrossRefGoogle Scholar
Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised machine learning: A brief primer. Behavior Therapy, 51(5), 675687. https://doi.org/10.1016/j.beth.2020.05.002CrossRefGoogle ScholarPubMed
Jung, Y., & Suh, Y. (2019). Mining the voice of employees: A text mining approach to identifying and analyzing job satisfaction factors from online employee reviews. Decision Support Systems, 123, 113074. https://doi.org/10.1016/j.dss.2019.113074CrossRefGoogle Scholar
Kenney, J. F., & Keeping, E. S. (1962). Linear regression and correlation. Mathematics of Statistics, 1, 252285.Google Scholar
Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica (Slovenia), 31(3), 249268.Google Scholar
Kouiroukidis, N., & Evangelidis, G. (2011). The effects of dimensionality curse in high dimensional kNN search. 2011 15th Panhellenic Conference on Informatics, 41–45. https://doi.org/10.1109/PCI.2011.45CrossRefGoogle Scholar
Krajewski, R. (2020, November 26). Python vs R: What language is better for data science projects? Ideamotive. https://www.ideamotive.co/blog/python-vs-r-what-language-is-better-for-data-science-projects.Google Scholar
Kuhn, M. (2019). Parallel processing. In The caret package. https://topepo.github.io/caret/parallel-processing.htmlGoogle Scholar
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer.CrossRefGoogle Scholar
Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of neural networks: A view from the wdth. ArXiv:1709.02540 [Cs]. http://arxiv.org/abs/1709.02540Google Scholar
MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281297.Google Scholar
Matusik, J. G., Heidl, R., Hollenbeck, J. R., Yu, A., Lee, H. W., & Howe, M. (2019). Wearable bluetooth sensors for capturing relational variables and temporal variability in relationships: A construct validation study. Journal of Applied Psychology, 104(3), 357387. https://doi.org/10.1037/apl0000334CrossRefGoogle ScholarPubMed
McKinney, W. (2012). Python for data analysis. O’Reilly Media.Google Scholar
Mitchell, T. M. (1997). Machine learning. McGraw-Hill.Google Scholar
Morgan, J. N., & Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Association, 58, 415434.CrossRefGoogle Scholar
Müller, A. C., & Guido, S. (2018). Introduction to machine learning with Python: A guide for data scientists. O’Reilly Media.Google Scholar
Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(6), 275285. https://doi.org/10.1002/cem.873CrossRefGoogle Scholar
Nelson, D. (2020). Data visualization in Python. StackAbuse.Google Scholar
Newman, D. A. (2014). Missing data: Five practical guidelines. Organizational Research Methods, 17(4), 372411. https://doi.org/10.1177/1094428114548590CrossRefGoogle Scholar
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., Ungar, L. H., & Seligman, M. E. P. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934952. https://doi.org/10.1037/pspp0000020CrossRefGoogle ScholarPubMed
Polyak, S. T., von Davier, A. A., & Peterschmidt, K. (2017). Computational psychometrics for the measurement of collaborative problem solving skills. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.02029CrossRefGoogle ScholarPubMed
Putka, D. J., Beatty, A. S., & Reeder, M. C. (2018). Modern prediction methods: New perspectives on a common problem. Organizational Research Methods, 21(3), 689732. https://doi.org/10.1177/1094428117697041CrossRefGoogle Scholar
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81106. https://doi.org/10.1007/BF00116251CrossRefGoogle Scholar
Quinlan, J. R. (1996). Bagging, boosting, and C4.5. Proceedings of the Thirteenth National Conference on Artificial Intelligence, 725–730.Google Scholar
Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., Albertson, B., & Rand, D. G. (2014). Structural topic models for open-ended survey responses. American Journal of Political Science, 58(4), 10641082. https://doi.org/10.1111/ajps.12103CrossRefGoogle Scholar
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581592. https://doi.org/10.1093/biomet/63.3.581CrossRefGoogle Scholar
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206215. https://doi.org/10.1038/s42256–019-0048-xCrossRefGoogle ScholarPubMed
Salehzadeh, R. (2017). Which types of leadership styles do followers prefer? A decision tree approach. International Journal of Educational Management, 31(7), 865877. https://doi.org/10.1108/IJEM-04-2016-0079Google Scholar
Speer, A. B. (2020). Scoring dimension-level job performance from narrative comments: Validity and generalizability when using natural language processing. Organizational Research Methods, 109442812093081. https://doi.org/10.1177/1094428120930815CrossRefGoogle Scholar
Steinhaus, H. (1956). Sur la division des corps matériels en parties. Bulletin L’Académie Polonaise des Science, 1(804), 801804.Google Scholar
Tay, L., Woo, S. E., Hickman, L., & Saef, R. M. (2020). Psychometric and validity issues in machine learning approaches to personality assessment: A focus on social media text mining. European Journal of Personality, 34(5), 826844. https://doi.org/10.1002/per.2290CrossRefGoogle Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.xGoogle Scholar
Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11). http://www.jmlr.org/papers/v9/vandermaaten08a.htmlGoogle Scholar
Wang, W., Hernandez, I., Newman, D. A., He, J., & Bian, J. (2016). Twitter analysis: Studying US weekly trends in work stress and emotion. Applied Psychology, 65(2), 355378. https://doi.org/10.1111/apps.12065CrossRefGoogle Scholar
Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. O’Reilly Media.Google Scholar
Winkielman, P., Schwarz, N., Fazendeiro, T. A., & Reber, R. (2003). The hedonic marking of processing fluency: Implications for evaluative judgment. In Musch, J. & Klauer, K. C. (Eds.), The psychology of evaluation: Affective processes in cognition and emotion (pp. 189217). Lawrence Erlbaum Associates Publishers.Google Scholar
Xu, H., Zhang, N., & Zhou, L. (2020). Validity concerns in research using organic data. Journal of Management, 46(7), 12571274. https://doi.org/10.1177/0149206319862027CrossRefGoogle Scholar
Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 10361040. https://doi.org/10.1073/pnas.1418680112CrossRefGoogle ScholarPubMed
Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient descent algorithms. ICML 2004: Proceedings of The Twenty-first International Conference on Machine Learning (pp. 919926). Omnipress. https://doi.org/10.1145/1015330.1015332Google Scholar
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301320. https://doi.org/10.1111/j.1467-9868.2005.00503.xCrossRefGoogle Scholar

References

Abbas, A., Ali, M., Khan, M. U. S., & Khan, S. U. (2016). Personalized healthcare cloud services for disease risk assessment and wellness management using social media. Pervasive and Mobile Computing, 28, 8199.CrossRefGoogle Scholar
Abdullah, S., Murnane, E. L., Matthews, M., Kay, M., Kientz, J. A., Gay, G., & Choudhury, T. (2016). Cognitive rhythms: Unobtrusive and continuous sensing of alertness using a mobile phone. In Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing (pp. 178–189).CrossRefGoogle Scholar
Abowd, D., Dey, A. K., Orr, R., & Brotherton, J. (1998). Context-awareness in wearable and ubiquitous computing. Virtual Reality, 3(3), 200211.CrossRefGoogle Scholar
Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. In International symposium on handheld and ubiquitous computing (pp. 304–307).CrossRefGoogle Scholar
Ajzen, I. (1987). Attitudes, traits, and actions: Dispositional prediction of behavior in personality and social psychology. In Berkowitz, L. (Ed.), Advances in experimental social psychology (Vol. 20, pp. 163). Elsevier.Google Scholar
Albalooshi, N., Mavridis, N., & Al-Qirim, N. (2012). A survey on social networks and organization development. In 2012 international conference on collaboration technologies and systems (CTS) (pp. 539–545).CrossRefGoogle Scholar
Allen, B. (2020). Your boss is watching you: Work-from-home boom leads to more surveillance. https://www.npr.org/2020/05/13/854014403/your-boss-is-watching-you-work-from-home-boom-leads-to-more-surveillanceGoogle Scholar
Amir, S., Coppersmith, G., Carvalho, P., Silva, M. J., & Wallace, B. C. (2017). Quantifying mental health from social media with neural user embeddings. arXiv preprint arXiv:1705.00335.Google Scholar
Anderson, G., & Viswesvaran, C. (1998). An update of the validity of personality scales in personnel selection: A meta-analysis of studies published after 1992. In 13th annual conference of the Society of Industrial and Organizational Psychology, Dallas.Google Scholar
Andreu-Perez, J., Leff, D. R., Ip, H. M., & Yang, G.-Z. (2015). From wearable sensors to smart implants – toward pervasive and personalized healthcare. IEEE Transactions on Biomedical Engineering, 62(12), 27502762.CrossRefGoogle ScholarPubMed
Appel-Meulenbroek, R., Groenen, P., & Janssen, I. (2011). An end-user’s perspective on activity-based office concepts. Journal of Corporate Real Estate, 13(2), 122135.CrossRefGoogle Scholar
Archambault, A., & Grudin, J. (2012). A longitudinal study of Facebook, LinkedIn, and Twitter use. In Proceedings of Chi 2012. Austin, TX.Google Scholar
Bagheri, G., Zarei, R., & Aeen, M. N. (2012). Organizational silence (basic concepts and its development factors). Ideal Type of Management, 1(1), 4758.Google Scholar
Bardzell, S. (2010). Feminist HCI: Taking stock and outlining an agenda for design. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1301–1310).CrossRefGoogle Scholar
Barley, S. R., Meyer, G. W., & Gash, D. C. (1988). Cultures of culture: Academics, practitioners and the pragmatics of normative control. Administrative Science Quarterly, 33(1), 2460.CrossRefGoogle Scholar
Barnett, R. C. (1994). Home-to-work spillover revisited: A study of full-time employed women in dual-earner couples. Journal of Marriage and the Family, 56(3), 647656.CrossRefGoogle Scholar
Barrick, M. R., & Mount, M. K. (1991). The big five personality dimensions and job performance: A meta-analysis. Personnel Psychology, 44(1), 126.CrossRefGoogle Scholar
Barthelemy, C. (2019). Workplace engagement program: A prototype for maximizing adaptation to activity-based working. Workplace Engagement Program Report. https://capstone.extension.harvard.edu/files/capstone/files/barthelemy_hdcapstone_report.pdfGoogle Scholar
Baruch, Y., & Holtom, B. C. (2008). Survey response rate levels and trends in organizational research. Human Relations, 61(8), 11391160.CrossRefGoogle Scholar
Bin Morshed, M., Saha, K., Li, R., D’Mello, S. K., De Choudhury, M., Abowd, G. D., & Plötz, T. (2019). Prediction of mood instability with passive sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(3).Google Scholar
Biran, O., & Cotton, C. (2017). Explanation and justification in machine learning: A survey. In Ijcai-17 workshop on explainable ai (xai) (Vol. 8, pp. 813).Google Scholar
Bone, D., Goodwin, M. S., Black, M. P., Lee, C.-C., Audhkhasi, K., & Narayanan, S. (2015). Applying machine learning to facilitate autism diagnostics: Pitfalls and promises. Journal of Autism and Developmental Disorders, 45(5), 11211136.CrossRefGoogle Scholar
Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662679.CrossRefGoogle Scholar
Brown, C., Efstratiou, C., Leontiadis, I., Quercia, D., Mascolo, C., Scott, J., & Key, P. (2014). The architecture of innovation: Tracking face-to-face interactions with ubicomp technologies. In Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing (pp. 811–822).CrossRefGoogle Scholar
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute co-ordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219223.CrossRefGoogle Scholar
Buschek, D., Bisinger, B., & Alt, F. (2018). Researchime: A mobile keyboard application for studying free typing behaviour in the wild. In Proceedings of the 2018 CHI conference on human factors in computing systems (pp. 1–14).CrossRefGoogle Scholar
Cable, D. M., & Judge, T. A. (1996). Person–organization fit, job choice decisions, and organizational entry. Organizational Behavior and Human Decision Processes, 67(3), 294311.CrossRefGoogle Scholar
Caceres, R., & Friday, A. (2011). Ubicomp systems at 20: Progress, opportunities, and challenges. IEEE Pervasive Computing, 11(1), 1421.CrossRefGoogle Scholar
Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, Jr, , J., & Ratti, C. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26, 301313.CrossRefGoogle Scholar
Campbell, A. T., Eisenman, S. B., Lane, N. D., Miluzzo, E., Peterson, R. A., Lu, H., … Ahn, G.-S. (2008). The rise of people-centric sensing. IEEE Internet Computing.CrossRefGoogle Scholar
Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: A review. Smart Materials and Structures, 23(5), 053001.CrossRefGoogle Scholar
Cerwall, P., Jonsson, P., Möller, R., Bävertoft, S., Carson, S., Godor, I., et al. (2015). On the pulse of the networked society. Ericsson Mobility Report. https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/june-2023Google Scholar
Cetto, A., Klier, J., Klier, M., Richter, A., & Wiesneth, K. (2016). The blessing of giving: Knowledge sharing and knowledge seeking in enterprise social networks. In Ecis (p. ResearchPaper64).Google Scholar
Chamberlain, A. (2015). Does company culture pay off? analyzing stock performance of ‘best places to work’ companies (Tech. Rep.). Glassdoor Research Report, March 2015.Google Scholar
Chan, L., Swain, V. D., Kelley, C., de Barbaro, K., Abowd, G. D., & Wilcox, L. (2018). Students’ experiences with ecological momentary assessment tools to report on emotional well-being. IMWUT.CrossRefGoogle Scholar
Chancellor, S., & Counts, S. (2018). Measuring employment demand using internet search data. In Proceedings of the 2018 CHI conference on human factors in computing systems (p. 122).CrossRefGoogle Scholar
Chancellor, S., & De Choudhury, M. (2020). Methods in predictive techniques for mental health status on social media: A critical review. NPJ Digital Medicine, 3(1), 111.CrossRefGoogle ScholarPubMed
Chawla, N. V., & Davis, D. A. (2013). Bringing big data to personalized healthcare: A patient-centered framework. Journal of General Internal Medicine, 28(3), 660665.CrossRefGoogle ScholarPubMed
Chen, Z., Lin, M., Chen, F., Lane, N. D., Cardone, G., Wang, R., … Campbell, A. T. (2013). Unobtrusive sleep monitoring using smartphones. In 2013 7th international conference on pervasive computing technologies for healthcare and workshops (pp. 145–152).CrossRefGoogle Scholar
Chiaburu, D. S., Oh, I.-S., Berry, C. M., Li, N., & Gardner, R. G. (2011). The five-factor model of personality traits and organizational citizenship behaviors: A meta-analysis. Journal of Applied Psychology, 96(6), 11401166.CrossRefGoogle ScholarPubMed
Chittaranjan, G., Blom, J., & Gatica-Perez, D. (2011). Who’s who with big-five: Analyzing and classifying personality traits with smartphones. In 2011 15th annual international symposium on wearable computers (pp. 29–36).CrossRefGoogle Scholar
Chittaranjan, G., Blom, J., & Gatica-Perez, D. (2013). Mining large-scale smartphone data for personality studies. Personal and Ubiquitous Computing, 17(3), 433450.CrossRefGoogle Scholar
Christin, D. (2016). Privacy in mobile participatory sensing: Current trends and future challenges. Journal of Systems and Software, 116, 5768.CrossRefGoogle Scholar
Ciman, M., & Wac, K. (2016). Individuals’ stress assessment using human-smartphone interaction analysis. IEEE Transactions on Affective Computing, 9(1), 5165.CrossRefGoogle Scholar
Como, R., Hambley, L., & Domene, J. (2021). An exploration of work-life wellness and remote work during and beyond Covid-19. Canadian Journal of Career Development, 20(1), 4656.Google Scholar
Cooke, R. A., & Rousseau, D. M. (1988). Behavioral norms and expectations: A quantitative approach to the assessment of organizational culture. Group & Organization Studies, 13(3), 245273.CrossRefGoogle Scholar
Cooke, R. A., & Szumal, J. L. (2000). Using the organizational culture inventory to understand the operating cultures of organizations. In Ashkanasy, N. M., Wilderom, C. P. M., & Peterson, M. F. (Eds.), Handbook of organizational culture and climate (Vol. 4, pp. 10321045). Sage.Google Scholar
Coppersmith, G., Harman, C., & Dredze, M. (2014). Measuring post traumatic stress disorder in Twitter. In International AAAI conference on web and social media.CrossRefGoogle Scholar
Council, J. R. (1993). Context effects in personality research. Current Directions in Psychological Science, 2(2), 3134.CrossRefGoogle Scholar
Cunningham, J. A., & Whalley, J. (2020). Internet of things: Promises and complexities. In Cunningham, J. A. & Whalley, J. (Eds.), The internet of things entrepreneurial ecosystems (pp. 111). Springer.CrossRefGoogle Scholar
Das Swain, V., Chen, V., Mishra, S., Mattingly, S. M., Abowd, G. D., & De Choudhury, M. (2022). Semantic gap in predicting mental wellbeing through passive sensing. In CHI conference on human factors in computing systems (pp. 1–16).Google Scholar
Das Swain, V., Kwon, H., Saket, B., Bin Morshed, M., Tran, K., Patel, D., … Abowd, G. D. (2020). Leveraging wifi network logs to infer social interactions: A case study of academic performance and student behavior. arXiv:2005.11228 [cs.HC].Google Scholar
Das Swain, V., Reddy, M. D., Nies, K. A., Tay, L., De Choudhury, M., & Abowd, G. D. (2019). Birds of a feather clock together: A study of person–organization fit through latent activity routines. Proceedings of ACM Human-Computer Interaction (CSCW).Google Scholar
Das Swain, V., Saha, K., Rajvanshy, H., Sirigiri, A., Gregg, J. M., Lin, S., … De Choudhury, M. (2019). A multisensor person-centered approach to understand the role of daily activities in job performance with organizational personas. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(4), 127.CrossRefGoogle Scholar
Das Swain, V., Saha, K., Reddy, M. D., Rajvanshy, H., Abowd, G. D., & De Choudhury, M. (2020). Modeling organizational culture with workplace experiences shared on glassdoor. In ACM CHI conference on human factors in computing systems.Google Scholar
De Choudhury, M., & Counts, S. (2013). Understanding affect in the workplace via social media. In Proceedings of the 2013 conference on computer supported cooperative work (pp. 303–316).CrossRefGoogle Scholar
De Choudhury, M., Gamon, M., Counts, S., & Horvitz, E. (2013). Predicting depression via social media. In ICWSM.Google Scholar
Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing, 5(1), 47.CrossRefGoogle Scholar
Dey, A. K. (2018). Context-aware computing. In Krumm, J. (Ed.), Ubiquitous computing fundamentals (pp. 335366). Chapman & Hall/CRC.Google Scholar
DiMicco, J., Millen, D. R., Geyer, W., Dugan, C., Brownholtz, B., & Muller, M. (2008). Motivations for social networking at work. In Proceedings of the 2008 ACM conference on computer supported cooperative work (pp. 711–720).CrossRefGoogle Scholar
Di Stefano, G., Gino, F., Pisano, G. P., & Staats, B. R. (2016). Making experience count: The role of reflection in individual learning. Harvard Business School NOM Unit Working Paper (14-093).Google Scholar
Dollinger, S. J., Urban, K. K., & James, T. A. (2004). Creativity and openness: Further validation of two creative product measures. Creativity Research Journal, 16(1), 3547.CrossRefGoogle Scholar
Domingos, P. (1998). Occam’s two razors: The sharp and the blunt. In Kdd (pp. 37–43).Google Scholar
Dunn, W., Brown, C., & McGuigan, A. (1994). The ecology of human performance: A framework for considering the effect of context. American Journal of Occupational Therapy, 48(7), 595607.CrossRefGoogle ScholarPubMed
Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4), 211407.CrossRefGoogle Scholar
D’Mello, S. K., Tay, L., & Southwell, R. (2022). Psychological measurement in the information age: Machine-learned computational models. Current Directions in Psychological Science, 31(1), 7687.CrossRefGoogle Scholar
Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10(4), 255268.CrossRefGoogle Scholar
Eagle, N., & Pentland, A. S. (2009). Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology, 63(7), 10571066.CrossRefGoogle Scholar
Ehrlich, K., & Shami, N. S. (2010). Microblogging inside and outside the workplace. In ICWSM.CrossRefGoogle Scholar
Ernala, S. K., Birnbaum, M. L., Candan, K. A., Rizvi, A. F., Sterling, W. A., Kane, J. M., & De Choudhury, M. (2019). Methodological gaps in predicting mental health states from social media: Triangulating diagnostic signals. In Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1–16).CrossRefGoogle Scholar
Estrin, D. (2014). Small data, where n=me. Communications of the ACM, 57(4), 3234.CrossRefGoogle Scholar
Feng, T., & Narayanan, S. S. (2020). Modeling behavioral consistency in large-scale wearable recordings of human bio-behavioral signals. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1011–1015).CrossRefGoogle Scholar
Ferreira, D., Kostakos, V., & Dey, A. K. (2015). Aware: Mobile context instrumentation framework. Frontiers in ICT, 2, 6.CrossRefGoogle Scholar
Fiesler, C., & Proferes, N. (2018). “Participant” perceptions of Twitter research ethics. Social Media + Society.CrossRefGoogle Scholar
Foster, K. R., Koprowski, R., & Skufca, J. D. (2014). Machine learning, medical diagnosis, and biomedical engineering research-commentary. Biomedical Engineering Online, 13(1), 94.CrossRefGoogle ScholarPubMed
Froehlich, J., Chen, M. Y., Consolvo, S., Harrison, B., & Landay, J. A. (2007). Myexperience: A system for in situ tracing and capturing of user feedback on mobile phones. In Proceedings of the 5th international conference on mobile systems, applications and services (pp. 57–70).CrossRefGoogle Scholar
Furnham, A., & Zacherl, M. (1986). Personality and job satisfaction. Personality and Individual Differences, 7(4), 453459.CrossRefGoogle Scholar
Giddens, L., Leidner, D., & Gonzalez, E. (2017). The role of fitbits in corporate wellness programs: Does step count matter? In Proceedings of the 50th Hawaii International Conference on System Sciences.CrossRefGoogle Scholar
Glaser, S. R., Zamanou, S., & Hacker, K. (1987). Measuring and interpreting organizational culture. Management Communication Quarterly, 1(2), 173198.CrossRefGoogle Scholar
Goffman, E. (1959). The presentation of self in everyday life. University of Edinburgh Social Sciences Research Centre.Google Scholar
Goldberg, A., Srivastava, S. B., Manian, V. G., Monroe, W., & Potts, C. (2016). Fitting in or standing out? The tradeoffs of structural and cultural embeddedness. American Sociological Review, 81(6), 11901222.CrossRefGoogle Scholar
Golder, S. A., & Macy, M. W. (2011). Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science, 333(6051), 18781881.CrossRefGoogle ScholarPubMed
Golestani, A., Masli, M., Shami, N. S., Jones, J., Menon, A., & Mondal, J. (2018). Real-time prediction of employee engagement using social media and text mining. In 2018 17th IEEE international conference on machine learning and applications (ICMLA) (pp. 1383–1387).CrossRefGoogle Scholar
Golub, A., Johnson, B. D., & Labouvie, E. (2000). On correcting biases in self-reports of age at first substance use with repeated cross-section analysis. Journal of Quantitative Criminology, 16(1), 4568.CrossRefGoogle ScholarPubMed
Groves, R. M., & Peytcheva, E. (2008). The impact of nonresponse rates on nonresponse bias: A meta-analysis. Public Opinion Quarterly, 72(2), 167189.CrossRefGoogle Scholar
Grünerbl, A., Muaremi, A., Osmani, V., Bahle, G., Oehler, S., Tröster, G., … Lukowicz, P. (2015). Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE JBHI.CrossRefGoogle Scholar
Guy, I., Ronen, I., Zwerdling, N., Zuyev-Grabovitch, I., & Jacovi, M. (2016). What is your organization ‘like’?: A study of liking activity in the enterprise. In Proceedings of the 2016 CHI conference on human factors in computing systems.CrossRefGoogle Scholar
Hanna, B., Kee, K. F., & Robertson, B. W. (2017). Positive impacts of social media at work: Job satisfaction, job calling, and Facebook use among co-workers. In Shs web of conferences (Vol. 33, p. 00012).CrossRefGoogle Scholar
Harari, G. M., Lane, N. D., Wang, R., Crosier, B. S., Campbell, A. T., & Gosling, S. D. (2016). Using smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspectives on Psychological Science, 11(6), 838854.CrossRefGoogle Scholar
Harari, G. M., Müller, S. R., Aung, M. S., & Rentfrow, P. J. (2017). Smartphone sensing methods for studying behavior in everyday life. Current Opinion in Behavioral Sciences, 18, 8390.CrossRefGoogle Scholar
Harari, G. M., Vaid, S. S., Müller, S. R., Stachl, C., Marrero, Z., Schoedel, R., … Gosling, S. D. (2020). Personality sensing for theory development and assessment in the digital age. European Journal of Personality, 34(5), 649669.CrossRefGoogle Scholar
Heilman, M. E. (2012). Gender stereotypes and workplace bias. Research in Organizational Behavior, 32, 113135.CrossRefGoogle Scholar
Hellhammer, J., & Schubert, M. (2012). The physiological response to trier social stress test relates to subjective measures of stress during but not before or after the test. Psychoneuroendocrinology, 37(1), 119124.CrossRefGoogle ScholarPubMed
Hickman, L., Saha, K., De Choudhury, M., & Tay, L. (2019). Automated tracking of components of job satisfaction via text mining of twitter data. In Ml symposium, SIOP.Google Scholar
Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions and organizations across nations. Sage Publications.Google Scholar
Hofstede, G., Neuijen, B., Ohayv, D. D., & Sanders, G. (1990). Measuring organizational cultures: A qualitative and quantitative study across twenty cases. Administrative Science Quarterly, 35(2), 286316.CrossRefGoogle Scholar
Hovsepian, K., al’Absi, M., Ertin, E., Kamarck, T., Nakajima, M., & Kumar, S. (2015). cstress: Towards a gold standard for continuous stress assessment in the mobile environment. In Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing (pp. 493–504).CrossRefGoogle Scholar
Howard, M. C., & Hoffman, M. E. (2018). Variable-centered, person-centered, and person-specific approaches: Where theory meets the method. Organizational Research Methods, 21(4), 846876.CrossRefGoogle Scholar
Insel, T. R. (2017). Digital phenotyping: Technology for a new science of behavior. JAMA, 318(13), 12151216.CrossRefGoogle ScholarPubMed
Jacovi, M., Guy, I., Kremer-Davidson, S., Porat, S., & Aizenbud-Reshef, N. (2014). The perception of others: Inferring reputation from social media in the enterprise. In Proceedings of the 17th ACM conference on computer supported cooperative work & social computing (pp. 756–766).CrossRefGoogle Scholar
Jain, S. H., Powers, B. W., Hawkins, J. B., & Brownstein, J. S. (2015). The digital phenotype. Nature Biotechnology, 33(5), 462463.CrossRefGoogle ScholarPubMed
Jebelli, H., Hwang, S., & Lee, S. (2018). EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device. Journal of Computing in Civil Engineering, 32(1), 04017070.CrossRefGoogle Scholar
Jhaver, S., Cranshaw, J., & Counts, S. (2019). Measuring professional skill development in U.S. cities using internet search queries. In ICWSM.Google Scholar
Jouhki, J., Lauk, E., Penttinen, M., Sormanen, N., & Uskali, T. (2016). Facebook’s emotional contagion experiment as a challenge to research ethics. Media and Communication, 4(4), 7585.CrossRefGoogle Scholar
Judge, T. A., & Zapata, C. P. (2015). The person–situation debate revisited: Effect of situation strength and trait activation on the validity of the big five personality traits in predicting job performance. Academy of Management Journal, 58(4), 11491179.CrossRefGoogle Scholar
Kamdar, D., & Van Dyne, L. (2007). The joint effects of personality and workplace social exchange relationships in predicting task performance and citizenship performance. Journal of Applied Psychology, 92(5), 12861298.CrossRefGoogle ScholarPubMed
Khakurel, J., Melkas, H., & Porras, J. (2018). Tapping into the wearable device revolution in the work environment: A systematic review. Information Technology & People, 31(3).CrossRefGoogle Scholar
King, C. E., & Sarrafzadeh, M. (2018). A survey of smartwatches in remote health monitoring. Journal of Healthcare Informatics Research, 2(1), 124.CrossRefGoogle ScholarPubMed
Klasnja, P., Consolvo, S., McDonald, D. W., Landay, J. A., & Pratt, W. (2009). Using mobile & personal sensing technologies to support health behavior change in everyday life: Lessons learned. In Amia annual symposium proceedings (Vol. 2009, p. 338).Google Scholar
Kramer, A. D., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, 111(24), 87888790.CrossRefGoogle ScholarPubMed
Kreuter, F., Haas, G.-C., Keusch, F., Bähr, S., & Trappmann, M. (2020). Collecting survey and smartphone sensor data with an app: Opportunities and challenges around privacy and informed consent. Social Science Computer Review, 38(5), 533549.CrossRefGoogle Scholar
Krumpal, I. (2013). Determinants of social desirability bias in sensitive surveys: A literature review. Quality & Quantity, 47, 20252047.CrossRefGoogle Scholar
Lampert, R. (2015). ECG signatures of psychological stress. Journal of Electrocardiology, 48(6), 10001005.CrossRefGoogle ScholarPubMed
Langheinrich, M. (2009). Privacy in ubiquitous computing. In Krumm, J. (Ed.), Ubiquitous computing (pp. 104174). Chapman & Hall/CRC.Google Scholar
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of google flu: Traps in big data analysis. Science, 343(6176), 12031205.CrossRefGoogle ScholarPubMed
Lazer, D., & Radford, J. (2017). Data ex machina: Introduction to big data. Annual Review of Sociology, 43, 1939.CrossRefGoogle Scholar
Lee, H., Kim, S., Couper, M. P., & Woo, Y. (2019). Experimental comparison of PC web, smartphone web, and telephone surveys in the new technology era. Social Science Computer Review, 37(2), 234247.CrossRefGoogle Scholar
Lee, J., & Kang, J. (2017). A study on job satisfaction factors in retention and turnover groups using dominance analysis and LDA topic modeling with employee reviews on glassdoor.com.Google Scholar
Lee, J., Lam, M., & Chiu, C. (2019). Clara: Design of a new system for passive sensing of depression, stress and anxiety in the workplace. In International symposium on pervasive computing paradigms for mental health (pp. 12–28).CrossRefGoogle Scholar
Li, I., Dey, A., & Forlizzi, J. (2010). A stage-based model of personal informatics systems. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 557–566).CrossRefGoogle Scholar
Li, S., Zhou, X., Dong, Y., & Li, J. (2020). Flexible self-repairing materials for wearable sensing applications: Elastomers and hydrogels. Macromolecular Rapid Communications, 41(23), 2000444.CrossRefGoogle ScholarPubMed
Lindberg, A., Berente, N., Gaskin, J., Lyytinen, K., & Yoo, Y. (2013). Computational approaches for analyzing latent social structures in open source organizing. In International conference on information systems.Google Scholar
Ling, R., & Horst, H. A. (2011). Mobile communication in the global south (Vol. 13) (No. 3). Sage Publications.CrossRefGoogle Scholar
Liu, J., Wang, Y., Chen, Y., Yang, J., Chen, X., & Cheng, J. (2015). Tracking vital signs during sleep leveraging off-the-shelf wifi. In Proceedings of the 16th ACM international symposium on mobile ad hoc networking and computing (pp. 267–276).CrossRefGoogle Scholar
Liu, S., Hachen, D., Lizardo, O., Poellabauer, C., Striegel, A., & Milenkoviĉ, T. (2018). Network analysis of the nethealth data: Exploring co-evolution of individuals’ social network positions and physical activities. Applied Network Science, 3(1), 126.CrossRefGoogle ScholarPubMed
Liu, Y., & Du, S. (2018). Psychological stress level detection based on electrodermal activity. Behavioural Brain Research, 341, 5053.CrossRefGoogle ScholarPubMed
Lowe, G. S., Schellenberg, G., & Shannon, H. S. (2003). Correlates of employees’ perceptions of a healthy work environment. American Journal of Health Promotion, 17(6), 390399.CrossRefGoogle ScholarPubMed
Lu, H., Pan, W., Lane, N. D., Choudhury, T., & Campbell, A. T. (2009). Soundsense: Scalable sound sensing for people-centric applications on mobile phones. In Proceedings of the 7th international conference on mobile systems, applications, and services (pp. 165–178).CrossRefGoogle Scholar
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., … Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 5667.CrossRefGoogle ScholarPubMed
Luo, N., Zhou, Y., & Shon, J. (2016). Employee satisfaction and corporate performance: Mining employee reviews on glassdoor.com.Google Scholar
Madan, A., Moturu, S. T., Lazer, D., & Pentland, A. (2010). Social sensing: Obesity, unhealthy eating and exercise in face-to-face networks. In Wireless health 2010 (pp. 104–110).CrossRefGoogle Scholar
Madden, T. J., Ellen, P. S., & Ajzen, I. (1992). A comparison of the theory of planned behavior and the theory of reasoned action. Personality and Social Psychology Bulletin, 18(1), 39.CrossRefGoogle Scholar
Mallinckrodt, C. H., Sanger, T. M., Dubé, S., DeBrota, D. J., Molenberghs, G., Carroll, R. J., … Tollefson, G. D. (2003). Assessing and interpreting treatment effects in longitudinal clinical trials with missing data. Biological Psychiatry, 53(8), 754760.CrossRefGoogle ScholarPubMed
Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P., & Dewhurst, M. (2017). A future that works: AI, automation, employment, and productivity. McKinsey Global Institute Research, Tech. Rep, 60, 1135.Google Scholar
Mariani, B., Jiménez, M. C., Vingerhoets, F. J., & Aminian, K. (2012). On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 60(1), 155158.CrossRefGoogle Scholar
Mark, G. (2015). Multitasking in the digital age. Synthesis Lectures on Human-Centered Informatics, 8(3), 1113.CrossRefGoogle Scholar
Mark, G., Czerwinski, M., Iqbal, S., & Johns, P. (2016). Workplace indicators of mood: Behavioral and cognitive correlates of mood among information workers. In Proceedings of the 6th international conference on digital health (pp. 29–36).CrossRefGoogle Scholar
Mark, G., Iqbal, S. T., Czerwinski, M., Johns, P., Sano, A., & Lutchyn, Y. (2016). Email duration, batching and self-interruption: Patterns of email use on productivity and stress. In Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 1717–1728).CrossRefGoogle Scholar
Martinez, G. J., Mattingly, S. M., Young, J., Faust, L., Dey, A. K., Campbell, A. T., De Choudhury, M., Mirjafari, S., Nepal, S. K., Robles-Granda, P., Saha, K., & Striegel, A. D. (2020). Improved sleep detection through the fusion of phone agent and wearable data streams. In Wristsense 2020.CrossRefGoogle Scholar
Maslow, A. H. (1966). The psychology of science: A reconnaissance. Gateway.Google Scholar
Mathur, A., Van den Broeck, M., Vanderhulst, G., Mashhadi, A., & Kawsar, F. (2015). Tiny habits in the giant enterprise: Understanding the dynamics of a quantified workplace. In Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing (pp. 577–588).CrossRefGoogle Scholar
Mattingly, S. M., Gregg, J. M., Audia, P., Bayraktaroglu, A. E., Campbell, A. T., Chawla, N. V., … Dey, A. K. (2019). The Tesserae project: Large-scale, longitudinal, in situ, multimodal sensing of information workers. CHI conference on human factors in computing systems.CrossRefGoogle Scholar
McLaren, H. J., Wong, K. R., Nguyen, K. N., & Mahamadachchi, K. N. D. (2020). Covid-19 and women’s triple burden: Vignettes from Sri Lanka, Malaysia, Vietnam and Australia. Social Sciences, 9(5), Article 87.CrossRefGoogle Scholar
Mehl, M. R. (2017). The electronically activated recorder (ear): A method for the naturalistic observation of daily social behavior. Current Directions in Psychological Science, 26(2), 184190.CrossRefGoogle Scholar
Mehrotra, A., & Musolesi, M. (2018). Using autoencoders to automatically extract mobility features for predicting depressive states. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3), 127.CrossRefGoogle Scholar
Mehrotra, A., Pejovic, V., & Musolesi, M. (2014). Sensocial: A middleware for integrating online social networks and mobile sensing data streams. In Proceedings of the 15th international middleware conference (pp. 205–216).CrossRefGoogle Scholar
Meyer, B., Burtscher, M. J., Jonas, K., Feese, S., Arnrich, B., Tröster, G., & Schermuly, C. C. (2016). What good leaders actually do: Micro-level leadership behaviour, leader evaluations, and team decision quality. European Journal of Work and Organizational Psychology, 25(6), 773789.CrossRefGoogle Scholar
Miluzzo, E., Lane, N. D., Eisenman, S. B., & Campbell, A. T. (2007). Cenceme – injecting sensing presence into social networking applications. In European conference on smart sensing and context (pp. 1–28).CrossRefGoogle Scholar
Mirjafari, S., Masaba, K., Grover, T., Wang, W., Audia, P., Campbell, A. T., … Mark, G. (2019). Differentiating higher and lower job performers in the workplace using mobile sensing. Proc. ACM IMWUT, 3(2), Article 37.Google Scholar
Mitra, T., Muller, M., Shami, N. S., Golestani, A., & Masli, M. (n.d.). Spread of employee engagement in a large organizational network: A longitudinal analysis. PACM HCI(CSCW).Google Scholar
Mohr, D. C., Burns, M. N., Schueller, S. M., Clarke, G., & Klinkman, M. (2013). Behavioral intervention technologies: Evidence review and recommendations for future research in mental health. General Hospital Psychiatry, 35(4), 332338.CrossRefGoogle ScholarPubMed
Mohr, D. C., Zhang, M., & Schueller, S. M. (2017). Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. Annual Review of Clinical Psychology, 13, 2347.CrossRefGoogle ScholarPubMed
Molenberghs, G., Thijs, H., Jansen, I., Beunckens, C., Kenward, M. G., Mallinckrodt, C., & Carroll, R. J. (2004). Analyzing incomplete longitudinal clinical trial data. Biostatistics, 5(3), 445464.CrossRefGoogle ScholarPubMed
Moniz, A. (2015). Inferring employees’ social media perceptions of goal-setting corporate cultures and the link to firm value. Unpublished Working Paper.Google Scholar
Montanari, A., Mascolo, C., Sailer, K., & Nawaz, S. (2017). Detecting emerging activity-based working traits through wearable technology. Proc. IMWUT.CrossRefGoogle Scholar
Moran, T. P., & Dourish, P. (2001). Introduction to this special issue on context-aware computing. Human–Computer Interaction, 16(2–4), 8795.CrossRefGoogle Scholar
Morrison, E. W., & Milliken, F. J. (2000). Organizational silence: A barrier to change and development in a pluralistic world. Academy of Management Review, 25(4), 706725.CrossRefGoogle Scholar
Morshed, M. B., Saha, K., Li, R., D’Mello, S. K., De Choudhury, M., Abowd, G. D., & Plötz, T. (2019). Prediction of mood instability with passive sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(3), Article 75.CrossRefGoogle Scholar
Muaremi, A., Arnrich, B., & Tröster, G. (2013). Towards measuring stress with smartphones and wearable devices during workday and sleep. BioNanoScience, 3(2), 172183.CrossRefGoogle ScholarPubMed
Muller, M., Shami, N. S., Guha, S., Masli, M., Geyer, W., & Wild, A. (2016). Influences of peers, friends, and managers on employee engagement. In Proceedings of the 19th international conference on supporting group work (pp. 131–136).CrossRefGoogle Scholar
Mundnich, K., Booth, B. M., l’Hommedieu, M., Feng, T., Girault, B., L’Hommedieu, J., … Narayanan, S. (2020). Tiles-2018, a longitudinal physiologic and behavioral data set of hospital workers. Scientific Data, 7(1), 126.CrossRefGoogle ScholarPubMed
Nadarajan, A., Somandepalli, K., & Narayanan, S. S. (2019). Speaker agnostic foreground speech detection from audio recordings in workplace settings from wearable recorders. In ICASSP 2019–2019 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 6765–6769).CrossRefGoogle Scholar
Nepal, S., Martinez, G. J., Mirjafari, S., Mattingly, S., Swain, V. D., Striegel, A., … Campbell, A. T. (2021). Assessing the impact of commuting on workplace performance using mobile sensing. IEEE Pervasive Computing, 20(4), 5260.CrossRefGoogle Scholar
Nepal, S., Martinez, G. J., Mirjafari, S., Saha, K., Swain, V. D., Xu, X., … Campbell, A. T. (2022). A survey of passive sensing in the workplace. arXiv preprint arXiv:2201.03074.Google Scholar
Nguyen, D. D., Nguyen, L., & Sila, V. (2019). Does corporate culture affect bank risk-taking? Evidence from loan-level data. British Journal of Management, 30(1), 106133.CrossRefGoogle Scholar
Olguin, D. O., & Pentland, A. S. (2008). Social sensors for automatic data collection. AMCIS 2008 Proceedings, 171.Google Scholar
Olguin, D. O., Waber, B. N., Kim, T., Mohan, A., Ara, K., & Pentland, A. (2009). Sensible organizations: Technology and methodology for automatically measuring organizational behavior. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(1), 4355.CrossRefGoogle Scholar
Olguin-Olguin, D. (2011). Sensor-based organizational design and engineering (Unpublished doctoral dissertation). Massachusetts Institute of Technology.Google Scholar
Olmedo-Aguirre, J. O., Reyes-Campos, J., Alor-Hernández, G., Machorro-Cano, I., Rodriguez-Mazahua, L., & Sánchez-Cervantes, J. L. (2022). Remote healthcare for elderly people using wearables: A review. Biosensors, 12(2), 73.CrossRefGoogle ScholarPubMed
Olson, G. M., & Olson, J. S. (2000). Distance matters. Human–Computer Interaction, 15(2–3), 139178.CrossRefGoogle Scholar
Olteanu, A., Castillo, C., Diaz, F., & Kiciman, E. (2019). Social data: Biases, methodological pitfalls, and ethical boundaries. Frontiers in Big Data, 2, 13.CrossRefGoogle ScholarPubMed
Ones, D. S., Viswesvaran, C., & Dilchert, S. (2005). Personality at work: Raising awareness and correcting misconceptions. Human Performance, 18(4), 389404.CrossRefGoogle Scholar
O’Reilly, C. (1989). Corporations, culture, and commitment: Motivation and social control in organizations. California Management Review, 31(4), 925.CrossRefGoogle Scholar
O’Reilly III, C. A., Chatman, J., & Caldwell, D. F. (1991). People and organizational culture: A profile comparison approach to assessing person-organization fit. Academy of Management Journal, 34(3), 487516.CrossRefGoogle Scholar
Oswald, D., Sherratt, F., & Smith, S. (2014). Handling the hawthorne effect: The challenges surrounding a participant observer. Review of Social Studies, 1(1), 5373.CrossRefGoogle Scholar
Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., & Barabási, A.-L. (2015). Returners and explorers dichotomy in human mobility. Nature Communications, 6(1), 18.CrossRefGoogle ScholarPubMed
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., … Seligman, M. E. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934952.CrossRefGoogle ScholarPubMed
Pasch, S. (2018). Corporate culture and industry-fit: A text mining approach. In IZA conference.Google Scholar
Plötz, T. (2021). Applying machine learning for sensor data analysis in interactive systems: Common pitfalls of pragmatic use and ways to avoid them. ACM Computing Surveys (CSUR), 54(6), 125.CrossRefGoogle Scholar
Poushter, J., Bishop, C., & Chwe, H. (2018). Social media use continues to rise in developing countries but plateaus across developed ones. Pew Research Center, 22, 219.Google Scholar
Prabhakaran, V., Neralwala, H., Rambow, O., & Diab, M. T. (2012). Annotations for power relations on email threads. In Lrec (pp. 806–811).Google Scholar
Prajogo, D. I., & McDermott, C. M. (2011). The relationship between multidimensional organizational culture and performance. International Journal of Operations & Production Management, 31(7), 712735.CrossRefGoogle Scholar
Purta, R., Mattingly, S., Song, L., Lizardo, O., Hachen, D., Poellabauer, C., & Striegel, A. (2016). Experiences measuring sleep and physical activity patterns across a large college cohort with fitbits. In Proceedings of the 2016 ACM international symposium on wearable computers (pp. 28–35).CrossRefGoogle Scholar
Quante, M., Wang, R., Weng, J., Kaplan, E. R., Rueschman, M., Taveras, E. M., … Redline, S. (2019). Seasonal and weather variation of sleep and physical activity in 12–14-year-old children. Behavioral Sleep Medicine, 17(4), 398410.CrossRefGoogle ScholarPubMed
Quinn, R. E., & Rohrbaugh, J. (1983). A spatial model of effectiveness criteria: Towards a competing values approach to organizational analysis. Management Science, 29(3), 363377.CrossRefGoogle Scholar
Reeves, B., Ram, N., Robinson, T. N., Cummings, J. J., Giles, C. L., Pan, J., … Yeykelis, L. (2021). Screenomics: A framework to capture and analyze personal life experiences and the ways that technology shapes them. Human–Computer Interaction, 36(2), 150201.CrossRefGoogle Scholar
Robertson, B. W., & Kee, K. F. (2017). Social media at work: The roles of job satisfaction, employment status, and Facebook use with co-workers. Computers in Human Behavior, 70, 191196.CrossRefGoogle Scholar
Robles-Granda, P., Lin, S., Wu, X., D’Mello, S., Martinez, G. J., Saha, K., … Chawla, N. V. (2020). Jointly predicting job performance, personality, cognitive ability, affect, and well-being. arXiv preprint arXiv:2006.08364.Google Scholar
Rooksby, J., Morrison, A., & Murray-Rust, D. (2019). Student perspectives on digital phenotyping: The acceptability of using smartphone data to assess mental health. In Proceedings of the 2019 CHI conference on human factors in computing systems (p. 425).CrossRefGoogle Scholar
Rudovic, O., Lee, J., Dai, M., Schuller, B., & Picard, R. W. (2018). Personalized machine learning for robot perception of affect and engagement in autism therapy. Science Robotics, 3(19).CrossRefGoogle ScholarPubMed
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 11611178.CrossRefGoogle Scholar
Ruths, D., & Pfeffer, J. (2014). Social media for large studies of behavior. Science, 346(6213), 10631064.CrossRefGoogle ScholarPubMed
Saha, K., Bayraktaroglu, A. E., Campbell, A. T., Chawla, N. V., De Choudhury, M., D’Mello, S. K., … Yoo, D. W. (2019). Social media as a passive sensor in longitudinal studies of human behavior and wellbeing. In Chi ext. abstracts.CrossRefGoogle Scholar
Saha, K., Chan, L., De Barbaro, K., Abowd, G. D., & De Choudhury, M. (2017). Inferring mood instability on social media by leveraging ecological momentary assessments. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3), 95.CrossRefGoogle Scholar
Saha, K., Grover, T., Mattingly, S. M., Swain, V. D., Gupta, P., Martinez, G. J., … De Choudhury, M. (2021). Person-centered predictions of psychological constructs with social media contextualized by multimodal sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(1), 132.CrossRefGoogle Scholar
Saha, K., Reddy, M. D., Mattingly, S., Moskal, E., Sirigiri, A., & De Choudhury, M. (2019). Libra: On LinkedIn based role ambiguity and its relationship with wellbeing and job performance. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 130.Google Scholar
Saha, K., Yousuf, A., Hickman, L., Gupta, P., Tay, L., & De Choudhury, M. (2021). A social media study on demographic differences in perceived job satisfaction. Proceedings of the ACM on Human-Computer Interaction (CSCW).CrossRefGoogle Scholar
Salganik, M. J., Lundberg, I., Kindel, A. T., Ahearn, C. E., Al-Ghoneim, K., Almaatouq, A., … McLanahan, S. (2020). Measuring the predictability of life outcomes with a scientific mass collaboration. Proceedings of the National Academy of Sciences, 117(15), 83988403.CrossRefGoogle ScholarPubMed
Sano, A., Johns, P., & Czerwinski, M. (2017). Designing opportune stress intervention delivery timing using multi-modal data. In 2017 seventh international conference on affective computing and intelligent interaction (ACII) (pp. 346–353).CrossRefGoogle Scholar
Sano, A., Phillips, A. J., Amy, Z. Y., McHill, A. W., Taylor, S., Jaques, N., … Picard, R. W. (2015). Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. In 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN) (pp. 1–6).CrossRefGoogle Scholar
Sano, A., & Picard, R. W. (2013). Stress recognition using wearable sensors and mobile phones. In ACII.CrossRefGoogle Scholar
Sansone, C., Morf, C. C., & Panter, A. T. (2003). The Sage handbook of methods in social psychology. Sage.Google Scholar
Schaule, F., Johanssen, J. O., Bruegge, B., & Loftness, V. (2018). Employing consumer wearables to detect office workers’ cognitive load for interruption management. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 120.CrossRefGoogle Scholar
Schmid Mast, M., Gatica-Perez, D., Frauendorfer, D., Nguyen, L., & Choudhury, T. (2015). Social sensing for psychology: Automated interpersonal behavior assessment. Current Directions in Psychological Science, 24(2), 154160.CrossRefGoogle Scholar
Schmidt, A., Beigl, M., & Gellersen, H.-W. (1999). There is more to context than location. Computers & Graphics, 23(6), 893901.CrossRefGoogle Scholar
Scott, J. C., & Reynolds, D. H. (2010). Handbook of workplace assessment (Vol. 32). John Wiley & Sons.Google Scholar
Shami, N. S., Muller, M., Pal, A., Masli, M., & Geyer, W. (2015). Inferring employee engagement from social media. In Proceedings of the 33rd annual ACM conference on human factors in computing systems (pp. 3999–4008).CrossRefGoogle Scholar
Shami, N. S., Nichols, J., & Chen, J. (2014). Social media participation and performance at work: A longitudinal study. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 115–118).CrossRefGoogle Scholar
Shami, N. S., Yang, J., Panc, L., Dugan, C., Ratchford, T., Rasmussen, J. C., … Ferrar, J. (2014). Understanding employee social media chatter with enterprise social pulse. In Proceedings of the 17th ACM conference on computer supported cooperative work & social computing.CrossRefGoogle Scholar
Shilton, K. (2009). Four billion little brothers? Privacy, mobile phones, and ubiquitous data collection. Communications of the ACM, 52(11).CrossRefGoogle Scholar
Silva, G. E., Goodwin, J. L., Sherrill, D. L., Arnold, J. L., Bootzin, R. R., Smith, T., … Quan, S. F. (2007). Relationship between reported and measured sleep times: The sleep heart health study (SHHS). Journal of Clinical Sleep Medicine, 3(6), 622630.CrossRefGoogle ScholarPubMed
Smith, F. J. (2014). Organizational surveys: The diagnosis and betterment of organizations through their members. Psychology Press.CrossRefGoogle Scholar
Smith, M., Szongott, C., Henne, B., & Von Voigt, G. (2012). Big data privacy issues in public social media. In 2012 6th IEEE international conference on digital ecosystems and technologies (DEST) (pp. 1–6).CrossRefGoogle Scholar
Smyth, J. M., Sliwinski, M. J., Zawadzki, M. J., Scott, S. B., Conroy, D. E., Lanza, S. T., … Almeida, D. M. (2018). Everyday stress response targets in the science of behavior change. Behaviour Research and Therapy, 101, 2029.CrossRefGoogle ScholarPubMed
Snyder, M. (1979). Self-monitoring processes. In Berkowitz, L. (Ed.), Advances in experimental social psychology (Vol. 12, pp. 85128). Elsevier.Google Scholar
Soto, C. J., & John, O. P. (2017). The next big five inventory (bfi-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. Journal of Personality and Social Psychology, 113(1), 117143.CrossRefGoogle ScholarPubMed
Soto, M., Satterfield, C., Fritz, T., Murphy, G. C., Shepherd, D. C., & Kraft, N. (2021). Observing and predicting knowledge worker stress, focus and awakeness in the wild. International Journal of Human-Computer Studies, 146, 102560.CrossRefGoogle Scholar
Srivastava, S. B., & Goldberg, A. (2017). Language as a window into culture. California Management Review, 60(1).CrossRefGoogle Scholar
Steinberg, H., Sykes, E. A., Moss, T., Lowery, S., LeBoutillier, N., & Dewey, A. (1997). Exercise enhances creativity independently of mood. British Journal of Sports Medicine, 31(3), 240245.CrossRefGoogle ScholarPubMed
Steindl, C., Jonas, E., Sittenthaler, S., Traut-Mattausch, E., & Greenberg, J. (2015). Understanding psychological reactance. Zeitschrift für Psychologie, 223(4), 205214.CrossRefGoogle ScholarPubMed
Strack, R., Von Der Linden, C., Booker, M., & Strohmayr, A. (2014, October 6). Decoding global talent. BCG Perspectives.Google Scholar
Tams, S. (2008). Constructing self-efficacy at work: A person-centered perspective. Personnel Review, 37(2), 165183.CrossRefGoogle Scholar
Tay, L., Woo, S. E., Hickman, L., & Saef, R. M. (2020). Psychometric and validity issues in machine learning approaches to personality assessment: A focus on social media text mining. European Journal of Personality, 34(5), 826844.CrossRefGoogle Scholar
Tett, R. P., Jackson, D. N., & Rothstein, M. (1991). Personality measures as predictors of job performance: A meta-analytic review. Personnel Psychology, 44(4), 703742.CrossRefGoogle Scholar
Thom, J., & Millen, D. R. (2012). Stuff IBMers say: Microblogs as an expression of organizational culture. In Sixth international AAAI conference on weblogs and social media.Google Scholar
Thomas, A. G., Dennis, A., Rawlings, N. B., Stagg, C. J., Matthews, L., Morris, M., … Johansen-Berg, H. (2016). Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise. Neuroimage, 131, 162170.CrossRefGoogle ScholarPubMed
Thom-Santelli, J., Millen, D. R., & Gergle, D. (2011). Organizational acculturation and social networking. In Proceedings of the ACM 2011 conference on computer supported cooperative work (pp. 313–316).CrossRefGoogle Scholar
Torous, J., & Nebeker, C. (2017). Navigating ethics in the digital age: Introducing connected and open research ethics (core), a tool for researchers and institutional review boards. Journal of Medical Internet Research, 19(2), e6793.CrossRefGoogle Scholar
Tsui, A. S., Nifadkar, S. S., & Ou, A. Y. (2007). Cross-national, cross-cultural organizational behavior research: Advances, gaps, and recommendations. Journal of Management, 33(3), 426478.CrossRefGoogle Scholar
Tufekci, Z. (2014). Big questions for social media big data: Representativeness, validity and other methodological pitfalls. In Eighth international AAAI conference on weblogs and social media.CrossRefGoogle Scholar
Umematsu, T., Sano, A., Taylor, S., & Picard, R. W. (2019). Improving students’ daily life stress forecasting using LSTM neural networks. In 2019 IEEE EMBS international conference on biomedical & health informatics (BHI) (pp. 1–4).CrossRefGoogle Scholar
Vaessen, J., & Raimondo, E. (2020). Conducting evaluations in times of covid-19 (coronavirus). https://ieg.worldbankgroup.org/blog/conducting-evaluations-times-covid-19-coronavirusGoogle Scholar
Vardi, Y. (2001). The effects of organizational and ethical climates on misconduct at work. Journal of Business Ethics, 29(4), 325337.CrossRefGoogle Scholar
Viswesvaran, C., & Ones, D. S. (2000). Perspectives on models of job performance. International Journal of Selection and Assessment, 8(4), 216226.CrossRefGoogle Scholar
Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., … Campbell, A. T. (2014). Studentlife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing (pp. 3–14).CrossRefGoogle Scholar
Warschauer, M., & Ames, M. (2010). Can one laptop per child save the world’s poor? Journal of International Affairs, 64(1), 3351.Google Scholar
Watkins Allen, M., Coopman, S. J., Hart, J. L., & Walker, K. L. (2007). Workplace surveillance and managing privacy boundaries. Management Communication Quarterly, 21(2), 172200.CrossRefGoogle Scholar
Wearne, T. A., Lucien, A., Trimmer, E. M., Logan, J. A., Rushby, J., Wilson, E., … McDonald, S. (2019). Anxiety sensitivity moderates the subjective experience but not the physiological response to psychosocial stress. International Journal of Psychophysiology, 141, 7683.CrossRefGoogle Scholar
Weiss, H. M. (2002). Deconstructing job satisfaction: Separating evaluations, beliefs and affective experiences. Human Resource Management Review, 12(2), 173194.CrossRefGoogle Scholar
Wiley, J. (2010). Strategic employee surveys: Evidence-based guidelines for driving organizational success. John Wiley & Sons.Google Scholar
Woo, S. E., Chae, M., Jebb, A. T., & Kim, Y. (2016). A closer look at the personality-turnover relationship: Criterion expansion, dark traits, and time. Journal of Management, 42(2), 357385.CrossRefGoogle Scholar
Woo, S. E., Jebb, A. T., Tay, L., & Parrigon, S. (2018). Putting the “person” in the center: Review and synthesis of person-centered approaches and methods in organizational science. Organizational Research Methods, 21(4), 814845.CrossRefGoogle Scholar
Woo, S. E., Tay, L., Jebb, A. T., Ford, M. T., & Kern, M. L. (2020). Big data for enhancing measurement quality. In Woo, S. E., Tay, L., & Proctor, R. W. (Eds.), Big data in psychological research (pp. 5985). American Psychological Association.CrossRefGoogle Scholar
Wright, A. G., & Woods, W. C. (2020). Personalized models of psychopathology. Annual Review of Clinical Psychology, 16, 4974.CrossRefGoogle ScholarPubMed
Wright, T. A., & Cropanzano, R. (2000). Psychological well-being and job satisfaction as predictors of job performance. Journal of Occupational Health Psychology, 5(1), 8494.CrossRefGoogle ScholarPubMed
Wu, F., Wu, T., & Yuce, M. R. (2019). Design and implementation of a wearable sensor network system for IoT-connected safety and health applications. In 2019 IEEE 5th world forum on internet of things (Wf-IoT) (pp. 87–90).CrossRefGoogle Scholar
Xu, X., Chikersal, P., Doryab, A., Villalba, D. K., Dutcher, J. M., Tumminia, M. J., … Mankoff, J. (2019). Leveraging routine behavior and contextually-filtered features for depression detection among college students. PACM IMWUT.CrossRefGoogle Scholar
Yilmaz, C., & Ergun, E. (2008). Organizational culture and firm effectiveness: An examination of relative effects of culture traits and the balanced culture hypothesis in an emerging economy. Journal of World Business, 43(3), 290306.CrossRefGoogle Scholar
Yuan, N. J., Zhang, F., Lian, D., Zheng, K., Yu, S., & Xie, X. (2013). We know how you live: Exploring the spectrum of urban lifestyles. In Proceedings of the first ACM conference on online social networks (pp. 3–14).CrossRefGoogle Scholar
Zakaria, C., Balan, R., & Lee, Y. (2019). Stressmon: Scalable detection of perceived stress and depression using passive sensing of changes in work routines and group interactions. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 129.CrossRefGoogle Scholar
Zedeck, S. E. (1992). Work, families, and organizations. Jossey-Bass.Google Scholar
Zenonos, A., Khan, A., Kalogridis, G., Vatsikas, S., Lewis, T., & Sooriyabandara, M. (2016). Healthyoffice: Mood recognition at work using smartphones and wearable sensors. In 2016 IEEE international conference on pervasive computing and communication workshops (percom workshops) (pp. 1–6).CrossRefGoogle Scholar
Zhang, H., De Choudhury, M., & Grudin, J. (2014). Creepy but inevitable?: The evolution of social networking. In Proceedings of the 17th ACM conference on computer supported cooperative work & social computing.CrossRefGoogle Scholar
Zhang, X., Pina, L. R., & Fogarty, J. (2016). Examining unlock journaling with diaries and reminders for in situ self-report in health and wellness. In Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 5658–5664).CrossRefGoogle Scholar
Zhao, D., & Rosson, M. B. (2009). How and why people twitter: The role that micro-blogging plays in informal communication at work. In Proceedings of the ACM 2009 international conference on supporting group work (pp. 243–252).CrossRefGoogle Scholar
Zimmerman, R. D., Swider, B. W., Woo, S. E., & Allen, D. G. (2016). Who withdraws? Psychological individual differences and employee withdrawal behaviors. Journal of Applied Psychology, 101(4), 498519.CrossRefGoogle ScholarPubMed

References

Abowd, J. M. (2018). The U.S. Census Bureau adopts differential privacy. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2867–2867).Google Scholar
Abril, P. S., Levin, A., & Del Riego, A. (2012). Blurred boundaries: Social media privacy and the twenty-first-century employee. American Business Law Journal, 49(1), 63124.CrossRefGoogle Scholar
Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509514.CrossRefGoogle ScholarPubMed
Acquisti, A., Brandimarte, L., & Loewenstein, G. (2020). Secrets and likes: The drive for privacy and the difficulty of achieving it in the digital age. Journal of Consumer Psychology, 30(4), 736758.CrossRefGoogle Scholar
Acquisti, A., & Grossklags, J. (2005). Privacy and rationality in individual decision making. IEEE Security & Privacy, 3(1), 2633.CrossRefGoogle Scholar
Adjerid, I., Peer, E., & Acquisti, A. (2018). Beyond the privacy paradox: Objective versus relative risk in privacy decision making. MIS Quarterly, 42(2), 465488.CrossRefGoogle Scholar
Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 439–450).CrossRefGoogle Scholar
Alge, B. J., Ballinger, G. A., Tangirala, S., & Oakley, J. L. (2006). Information privacy in organizations: Empowering creative and extrarole performance. Journal of Applied Psychology, 91(1), 221232.CrossRefGoogle ScholarPubMed
Alsarkal, Y., Zhang, N., & Xu, H. (2018). Your privacy is your friend’s privacy: Examining interdependent information disclosure on online social networks. In Proceedings of the 51st Hawaii International Conference on System Sciences (pp. 892–901).CrossRefGoogle Scholar
Altman, I. (1974). Privacy: A conceptual analysis. In Carson, D. H. (Ed.), Man-environment interactions: Evaluations and applications: Part 2 (pp. 1328). Environmental Design Research Association.Google Scholar
Article 29 Data Protection Working Party. (2014). Opinion 05/2014 on anonymisation techniques. https://ec.europa.eu/justice/article-29/documentation/Google Scholar
Auxier, B., Rainie, L., Anderson, M., Perrin, A., Kumar, M., & Turner, E. (2019). Americans and privacy: Concerned, confused and feeling lack of control over their personal information. Pew Research Center. https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/Google Scholar
Barbaro, M., Zeller, T., & Hansell, S. (2006). A face is exposed for AOL searcher no. 4417749. New York Times. https://www.nytimes.com/2006/08/09/technology/09aol.htmlGoogle Scholar
Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A., & Bonneau, R. (2015). Tweeting from left to right: Is online political communication more than an echo chamber?. Psychological Science, 26(10), 15311542.CrossRefGoogle ScholarPubMed
Beresford, A. R., Kübler, D., & Preibusch, S. (2012). Unwillingness to pay for privacy: A field experiment. Economics Letters, 117(1), 2527.CrossRefGoogle Scholar
Bernardi, C., & Maday, Y. (1997). Spectral methods. In Ciarlet, P. G. & Lions, J. L. (Eds.), Handbook of numerical analysis (Vol. 5; pp. 209485). Elsevier.Google Scholar
Bertrand, M., & Mullainathan, S. (2001). Do people mean what they say? Implications for subjective survey data. American Economic Review, 91(2), 6772.CrossRefGoogle Scholar
Bhave, D. P., Teo, L. H., & Dalal, R. S. (2020). Privacy at work: A review and a research agenda for a contested terrain. Journal of Management, 46(1), 127164.CrossRefGoogle Scholar
Brandeis, L., & Warren, S. (1890). The right to privacy. Harvard Law Review, 4(5), 193220.Google Scholar
Comarela, G., Durairajan, R., Barford, P., Christenson, D., & Crovella, M. (2018). Assessing candidate preference through web browsing history. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 158–167).CrossRefGoogle Scholar
Debatin, B., Lovejoy, J. P., Horn, A. K., & Hughes, B. N. (2009). Facebook and online privacy: Attitudes, behaviors, and unintended consequences. Journal of Computer‐Mediated Communication, 15(1), 83108.CrossRefGoogle Scholar
Dienlin, T., & Trepte, S. (2015). Is the privacy paradox a relic of the past? An in‐depth analysis of privacy attitudes and privacy behaviors. European Journal of Social Psychology, 45(3), 285297.CrossRefGoogle Scholar
Dinev, T., McConnell, R. A., & Smith, H. J. (2015). Informing privacy research through information systems, psychology, and behavioral economics: Thinking outside the “APCO” box. Information Systems Research, 26(4), 639655.CrossRefGoogle Scholar
Dong, Y., Yang, Y., Tang, J., Yang, Y., & Chawla, N. V. (2014, August). Inferring user demographics and social strategies in mobile social networks. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 15–24).CrossRefGoogle Scholar
Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of cryptography conference (pp. 265284). Springer.CrossRefGoogle Scholar
Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4), 211407.CrossRefGoogle Scholar
Erlingsson, Ú., Pihur, V., & Korolova, A. (2014). Rappor: Randomized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (pp. 1054–1067).CrossRefGoogle Scholar
Fung, B. C., Wang, K., Chen, R., & Yu, P. S. (2010). Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys, 42(4), 153.CrossRefGoogle Scholar
Ganta, S. R., Kasiviswanathan, S. P., & Smith, A. (2008, August). Composition attacks and auxiliary information in data privacy. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 265–273).CrossRefGoogle Scholar
Gates, G. W. (2011). How uncertainty about privacy and confidentiality is hampering efforts to more effectively use administrative records in producing U.S. national statistics. Journal of Privacy and Confidentiality, 3(2), 3–40.CrossRefGoogle Scholar
Groves, R. M. (2011). Three eras of survey research. Public Opinion Quarterly, 75(5), 861871.CrossRefGoogle Scholar
Gymrek, M., McGuire, A. L., Golan, D., Halperin, E., & Erlich, Y. (2013). Identifying personal genomes by surname inference. Science, 339(6117), 321324.CrossRefGoogle ScholarPubMed
Hao, K. (2018, October 21). Establishing an AI code of ethics will be harder than people think. MIT Technology Review.Google Scholar
Harford, T. (2014). Big data: A big mistake?. Significance, 11(5), 1419.CrossRefGoogle Scholar
Hoffmann, C. P., Lutz, C., & Ranzini, G. (2016). Privacy cynicism: A new approach to the privacy paradox. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 10(4).CrossRefGoogle Scholar
Hong, W., & Thong, J. Y. (2013). Internet privacy concerns: An integrated conceptualization and four empirical studies. MIS Quarterly, 37(1), 275298.CrossRefGoogle Scholar
Hu, J., Zeng, H. J., Li, H., Niu, C., & Chen, Z. (2007). Demographic prediction based on user’s browsing behavior. In Proceedings of the 16th International Conference on World Wide Web (pp. 151–160).CrossRefGoogle Scholar
Huang, Z., Du, W., & Chen, B. (2005). Deriving private information from randomized data. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data (pp. 37–48).CrossRefGoogle Scholar
Jia, H., Wisniewski, P. J., Xu, H., Rosson, M. B., & Carroll, J. M. (2015). Risk-taking as a learning process for shaping teen’s online information privacy behaviors. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 583–599).CrossRefGoogle Scholar
John, L. K., Acquisti, A., & Loewenstein, G. (2011). Strangers on a plane: Context-dependent willingness to divulge sensitive information. Journal of Consumer Research, 37(5), 858873.CrossRefGoogle Scholar
Jones, R., Kumar, R., Pang, B., & Tomkins, A. (2007). “I know what you did last summer” query logs and user privacy. In Proceedings of the 16th ACM Conference on Information and Knowledge Management (pp. 909–914).Google Scholar
Knoke, D., & Yang, S. (2019). Social network analysis. Sage Publications.Google Scholar
Koelmeyer, A., & Josey, N. (2019). Employment and privacy: Consent, the ‘privacy act’ and biometric scanners in the workplace. LSJ: Law Society of NSW Journal, 57, 7677.Google Scholar
Krauss, R. M., Freyberg, R., & Morsella, E. (2002). Inferring speakers’ physical attributes from their voices. Journal of Experimental Social Psychology, 38(6), 618625.CrossRefGoogle Scholar
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google flu: Traps in big data analysis. Science, 343(6176), 12031205.CrossRefGoogle ScholarPubMed
Lederer, S., Hong, J. I., Dey, A. K., & Landay, J. A. (2004). Personal privacy through understanding and action: Five pitfalls for designers. Personal and Ubiquitous Computing, 8(6), 440454.CrossRefGoogle Scholar
Lee, D. (2018, November 27). Predictim babysitter app: Facebook and Twitter take action. BBC News. https://bbc.comGoogle Scholar
Lelkes, Y., Krosnick, J. A., Marx, D. M., Judd, C. M., & Park, B. (2012). Complete anonymity compromises the accuracy of self-reports. Journal of Experimental Social Psychology, 48(6), 12911299.CrossRefGoogle Scholar
Li, H., Zhu, H., & Ma, D. (2017). Demographic information inference through meta-data analysis of Wi-Fi traffic. IEEE Transactions on Mobile Computing, 17(5), 10331047.CrossRefGoogle Scholar
Loukides, G., Denny, J. C., & Malin, B. (2010). The disclosure of diagnosis codes can breach research participants’ privacy. Journal of the American Medical Informatics Association, 17(3), 322327.CrossRefGoogle ScholarPubMed
Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 3es.CrossRefGoogle Scholar
Margulis, S. T. (1977). Conceptions of privacy: Current status and next steps. Journal of Social Issues, 33(3), 521.CrossRefGoogle Scholar
Marreiros, H., Tonin, M., Vlassopoulos, M., & Schraefel, M. C. (2017). “Now that you mention it”: A survey experiment on information, inattention and online privacy. Journal of Economic Behavior & Organization, 140, 117.CrossRefGoogle Scholar
McFarland, A. D., Lewis, K., & Goldberg, A. (2016). Sociology in the era of big data: The ascent of forensic social science. American Sociologist, 47, 1235.CrossRefGoogle Scholar
McFarland, D. A., & McFarland, H. R. (2015). Big data and the danger of being precisely inaccurate. Big Data & Society, July–December, 1–4.CrossRefGoogle Scholar
Merton, R. K. (1968). Social theory and social structure. Simon & Schuster.Google Scholar
National Research Council. (2011). The importance of common metrics for advancing social science theory and research: A workshop summary. National Academies Press.Google Scholar
National Science and Technology Council. (2016). National privacy research strategy. https://www.nitrd.gov/pubs/NationalPrivacyResearchStrategy.pdfGoogle Scholar
Narayanan, A., & Shmatikov, V. (2008). Robust de-anonymization of large sparse datasets. In Proceedings of the IEEE Symposium on Security and Privacy (pp. 111–125). IEEE.CrossRefGoogle Scholar
Neace, G. (2019). Biometric privacy: Blending employment law with the growth of technology. UIC Law Review, 53, 73112.Google Scholar
Nissenbaum, H. (2020). Privacy in context. Stanford University Press.Google Scholar
O’Neill, L., Dexter, F., & Zhang, N. (2016). The risks to patient privacy from publishing data from clinical anesthesia studies. Anesthesia & Analgesia, 122(6), 20172027.CrossRefGoogle ScholarPubMed
Osborne, C. (1991). Statistical calibration: A review. International Statistical Review, 59(3), 309336.CrossRefGoogle Scholar
Oswald, F. L., Behrend, T. S., Putka, D. J., & Sinar, E. (2020). Big data in industrial-organizational psychology and human resource management: Forward progress for organizational research and practice. Annual Review of Organizational Psychology and Organizational Behavior, 7, 505533.CrossRefGoogle Scholar
Paxton, A., & Griffiths, T. L. (2017). Finding the traces of behavioral and cognitive processes in big data and naturally occurring datasets. Behavior Research Methods, 49(5), 16301638.CrossRefGoogle ScholarPubMed
Peterson, D. (2016). Edtech and student privacy: California law as a model. Berkeley Technology Law Journal, 31(2), 961995.Google Scholar
Post, R. C. (2017). Data privacy and dignitary privacy: Google Spain, the right to be forgotten, and the construction of the public sphere. Duke Law Journal, 67, 9811072.Google Scholar
Powell, E. E., & Baker, T. (2014). It’s what you make of it: Founder identity and enacting strategic responses to adversity. Academy of Management Journal, 57(5), 14061433.CrossRefGoogle Scholar
Ravid, D. M., Tomczak, D. L., White, J. C., & Behrend, T. S. (2020). EPM 20/20: A review, framework, and research agenda for electronic performance monitoring. Journal of Management, 46(1), 100126.CrossRefGoogle Scholar
Ravid, D. M., White, J. C., & Behrend, T. S. (2021). Implications of COVID-19 for privacy at work. Industrial and Organizational Psychology, 14(1–2), 194198.CrossRefGoogle Scholar
Reynolds, B., Venkatanathan, J., Gonçalves, J., & Kostakos, V. (2011, September). Sharing ephemeral information in online social networks: Privacy perceptions and behaviours. In IFIP Conference on Human-Computer Interaction (pp. 204215). Springer.Google Scholar
Rocher, L., Hendrickx, J. M., & De Montjoye, Y. A. (2019). Estimating the success of re-identifications in incomplete datasets using generative models. Nature Communications, 10(1), 19.CrossRefGoogle ScholarPubMed
Ruggles, S. (2014). Big microdata for population research. Demography, 51(1), 287297.CrossRefGoogle ScholarPubMed
Russom, M. B., Sloan, R. H., & Warner, R. (2011). Legal concepts meet technology: A 50-state survey of privacy laws. In Proceedings of the 2011 Workshop on Governance of Technology, Information, and Policies (pp. 29–37).CrossRefGoogle Scholar
Schoeman, F. D. (Ed.). (1984). Philosophical dimensions of privacy: An anthology. Cambridge University Press.CrossRefGoogle Scholar
Sheehan, K. B., & Hoy, M. G. (1999). Flaming, complaining, abstaining: How online users respond to privacy concerns. Journal of Advertising, 28(3), 3751.CrossRefGoogle Scholar
Smith, H. J., Dinev, T., & Xu, H. (2011). Information privacy research: An interdisciplinary review. MIS Quarterly, 35(4), 9891015.CrossRefGoogle Scholar
Smith, H. J., Milberg, S. J., & Burke, S. J. (1996). Information privacy: Measuring individuals’ concerns about organizational practices. MIS Quarterly, 20(2), 167196.CrossRefGoogle Scholar
Solove, D. J. (2006). A taxonomy of privacy. University of Pennsylvania Law Review, 154(3), 477560.CrossRefGoogle Scholar
Solove, D. J. (2007). ‘I’ve got nothing to hide’ and other misunderstandings of privacy. San Diego Law Review, 44, 745772.Google Scholar
Solove, D. J. (2021). The myth of the privacy paradox. George Washington Law Review, 89(1), 1–51.Google Scholar
Sweeney, L. (2000). Simple demographics often identify people uniquely. Health (San Francisco), 671(2000), 134.Google Scholar
Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 557570.CrossRefGoogle Scholar
Tang, J., Korolova, A., Bai, X., Wang, X., & Wang, X. (2017). Privacy loss in Apple’s implementation of differential privacy on MacOS 10.12. arXiv preprint arXiv:1709.02753.Google Scholar
Thomson, J. J. (1975). The right to privacy. Philosophy & Public Affairs, 4(4), 295314.Google Scholar
Walker, R. K. (2012). The right to be forgotten. Hastings Law Journal, 64, 257286.Google Scholar
Wang, Y. X. (2018). Revisiting differentially private linear regression: Optimal and adaptive prediction & estimation in unbounded domain. In Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (pp. 93–103).Google Scholar
Wang, Z., Li, S., Shi, H., & Zhou, G. (2014). Skill inference with personal and skill connections. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical papers (pp. 520–529).Google Scholar
Weber, I., & Castillo, C. (2010). The demographics of web search. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 523–530).CrossRefGoogle Scholar
Weinstein, M. A. (1971). The uses of privacy in the good life. In Pennock, J. R. & Chapman, J. W. (Eds.), Nomos XIII: Privacy (pp. 624692). Atherton Press.Google Scholar
Westin, A. F. (1967). Privacy and freedom. Atheneum.Google Scholar
Wittes, B., & Liu, J. C. (2015, May 21). The privacy paradox: The privacy benefits of privacy threats. Center for Technology Innovation at Brookings.Google Scholar
Wood-Doughty, Z., Andrews, N., Marvin, R., & Dredze, M. (2018). Predicting Twitter user demographics from names alone. In Proceedings of the 2nd Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (pp. 105–111).CrossRefGoogle Scholar
Xu, H., Teo, H. H., Tan, B. C., & Agarwal, R. (2012). Effects of individual self-protection, industry self-regulation, and government regulation on privacy concerns: A study of location-based services. Information Systems Research, 23(4), 13421363.CrossRefGoogle Scholar
Xu, H., & Zhang, N. (2022). From contextualizing to context-theorizing: Assessing context effects in privacy research. Management Science, 68(10), 70657791.CrossRefGoogle Scholar
Yo, T., & Sasahara, K. (2017). Inference of personal attributes from tweets using machine learning. In 2017 IEEE International Conference on Big Data (pp. 31683174). IEEE.CrossRefGoogle Scholar
Yoo, J. S., Thaler, A., Sweeney, L., & Zang, J. (2018). Risks to patient privacy: A re-identification of patients in Maine and Vermont statewide hospital data. Journal of Technology and Science Education, 2018, 2018100901.Google Scholar
Zhong, Y., Yuan, N. J., Zhong, W., Zhang, F., & Xie, X. (2015). You are where you go: Inferring demographic attributes from location check-ins. In Proceedings of the 8th ACM International Conference on Web Search and Data Mining (pp. 295–304).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Foundations
  • Edited by Louis Tay, Purdue University, Indiana, Sang Eun Woo, Purdue University, Indiana, Tara Behrend, Purdue University, Indiana
  • Book: Technology and Measurement around the Globe
  • Online publication: 08 November 2023
  • Chapter DOI: https://doi.org/10.1017/9781009099813.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Foundations
  • Edited by Louis Tay, Purdue University, Indiana, Sang Eun Woo, Purdue University, Indiana, Tara Behrend, Purdue University, Indiana
  • Book: Technology and Measurement around the Globe
  • Online publication: 08 November 2023
  • Chapter DOI: https://doi.org/10.1017/9781009099813.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Foundations
  • Edited by Louis Tay, Purdue University, Indiana, Sang Eun Woo, Purdue University, Indiana, Tara Behrend, Purdue University, Indiana
  • Book: Technology and Measurement around the Globe
  • Online publication: 08 November 2023
  • Chapter DOI: https://doi.org/10.1017/9781009099813.002
Available formats
×