Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T15:00:22.203Z Has data issue: false hasContentIssue false

14 - Equivalence of the two main questions

Published online by Cambridge University Press:  10 February 2020

Gilles Pisier
Affiliation:
Texas A & M University
Get access

Summary

One of Kirchberg’s conjecture that we emphasize here is whether the LLP implies the WEP. This actually reduces to the case of the full C* algebra C of the free group with countably infinitely many generators, which is the prototypical example with the LLP. The question is shown to be equivalent to a very simple inequality, involving the linear span of the unitary generators of C, that seems to be related to Grothendieck’s classicalinequality from Banach space theory. Various results are proved that tend to « almost prove » the conjecture, notably one by Tsirelson in which it would suffice to replace real scalars by complex ones to obtain the full conjecture.

Type
Chapter
Information
Tensor Products of C*-Algebras and Operator Spaces
The Connes–Kirchberg Problem
, pp. 291 - 296
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×