Book contents
- Frontmatter
- Contents
- Introduction
- 1 Completely bounded and completely positive maps
- 2 Completely bounded and completely positive maps
- 3 C*-algebras of discrete groups
- 4 C*-tensor products
- 5 Multiplicative domains of c.p. maps
- 6 Decomposable maps
- 7 Tensorizing maps and functorial properties
- 8 Biduals, injective von Neumann algebras, and C*-norms
- 9 Nuclear pairs, WEP, LLP, QWEP
- 10 Exactness and nuclearity
- 11 Traces and ultraproducts
- 12 The Connes embedding problem
- 13 Kirchberg’s conjecture
- 14 Equivalence of the two main questions
- 15 Equivalence with finite representability conjecture
- 16 Equivalence with Tsirelson’s problem
- 17 Property (T) and residually finite groups
- 18 The WEP does not imply the LLP
- 19 Other proofs that C(n)
- 20
Local embeddability into C and nonseparability of (OSn, dcb)- 21
WEP as an extension property- 22
Complex interpolation and maximal tensor product- 23
Haagerup’s characterizations of the WEP- 24
Full crossed products and failure of WEP for B ⊗min B- 25
Open problems- Appendix
Miscellaneous backgroundReferencesIndex - 20
19 - Other proofs that C(n)<n: quantum expanders
Published online by Cambridge University Press: 10 February 2020
- Frontmatter
- Contents
- Introduction
- 1 Completely bounded and completely positive maps
- 2 Completely bounded and completely positive maps
- 3 C*-algebras of discrete groups
- 4 C*-tensor products
- 5 Multiplicative domains of c.p. maps
- 6 Decomposable maps
- 7 Tensorizing maps and functorial properties
- 8 Biduals, injective von Neumann algebras, and C*-norms
- 9 Nuclear pairs, WEP, LLP, QWEP
- 10 Exactness and nuclearity
- 11 Traces and ultraproducts
- 12 The Connes embedding problem
- 13 Kirchberg’s conjecture
- 14 Equivalence of the two main questions
- 15 Equivalence with finite representability conjecture
- 16 Equivalence with Tsirelson’s problem
- 17 Property (T) and residually finite groups
- 18 The WEP does not imply the LLP
- 19 Other proofs that C(n)
- 20 Local embeddability into C and nonseparability of (OSn, dcb)
- 21 WEP as an extension property
- 22 Complex interpolation and maximal tensor product
- 23 Haagerup’s characterizations of the WEP
- 24 Full crossed products and failure of WEP for B ⊗min B
- 25 Open problems
- Appendix Miscellaneous background
- References
- Index
Summary
In the paper where he formulated his famous conjecture that the LLP implies the WEP, Kirchberg actually conjectured that the converse also held. This was disproved shortly later on. This boils down to showing that B=B(H) fails the LLP, or equivalently that the pair (B,B) is not nuclear. We give a presentation of the construction that leads to this negative answer. The main point is in terms of a sequence of constants C(n) indexed by an integer n, and the negative answercan be derived rather quickly from the fact that C(n) < n for some n. We give various methods that prove this fact, including the most complete one that shows using random unitary matrices that C(n) is equal to twice the square root of n-1, and hence is <1 for all n>2. In passing this gives us a nice example showing that exactness is not stable under extensions, i.e. we can have an ideal I in some A such that both I and A/I are exact but A is not exact.Since the pair (B,B) is not nuclear, this means thatthere are two distinct C* norms on the tensor product of B with itself. We describe the more recent proof that there are infinitely many, and actually a whole continuum, of distinct such norms.
- Type
- Chapter
- Information
- Tensor Products of C*-Algebras and Operator SpacesThe Connes–Kirchberg Problem, pp. 333 - 343Publisher: Cambridge University PressPrint publication year: 2020