Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T15:49:30.735Z Has data issue: false hasContentIssue false

Thirteen - Skin, Furs, and Textiles: Mass Spectrometry-based Analysis of Ancient Protein Residues

Published online by Cambridge University Press:  20 November 2019

Serena Sabatini
Affiliation:
Göteborgs Universitet, Sweden
Sophie Bergerbrant
Affiliation:
Göteborgs Universitet, Sweden
Get access

Summary

This chapter explores the application of Mass spectrometry-based techniques for the study of ancient protein residues in archaeological textiles, furs and clothing.

Type
Chapter
Information
The Textile Revolution in Bronze Age Europe
Production, Specialisation, Consumption
, pp. 304 - 316
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand, L., Vichi, A., Doucet, J., Walter, P. and Blanchard, P. (2014) The fate of archaeological keratin fibres in a temperate burial context: microtaphonomy study of hairs from Marie de Bretagne (15th c., Orléans, France), Journal of Archaeological Science 42(Supplement C), 487499.Google Scholar
Bleicher, N., Kelstrup, C., Olsen, J. V. and Cappellini, E. (2015) Molecular evidence of use of hide glue in 4th millennium bc Europe, Journal of Archaeological Science 63, 6571.CrossRefGoogle Scholar
Bollongino, R., Tresset, A. and Vigne, J.-D. (2008) Environment and excavation: pre-lab impacts on ancient DNA analyses, Comptes Rendus Palevol 7(2), 9198.CrossRefGoogle Scholar
Brandt, L. Ø., Schmidt, A. L., Mannering, U., Sarret, M., Kelstrup, C. D., Olsen, J. V. and Cappellini, E. (2014) Species identification of archaeological skin objects from Danish bogs: comparison between mass spectrometry-based peptide sequencing and microscopy-based methods, PLOS ONE 9(9), e106875.Google Scholar
Brooks, A. S., Hare, P. E., Kokis, J. E., Miller, G. H., Ernst, R. and Wendorf, F. (1990) Dating Pleistocene archaeological sites by protein diagenesis in ostrich eggshell, Science 248(4951), 6064.CrossRefGoogle Scholar
Buckley, M., Kansa, S. W., Howard, S., Campbell, S., Thomas-Oates, J. and Collins, M. (2010) Distinguishing between archaeological sheep and goat bones using a single collagen peptide, Journal of Archaeological Science 37(1), 1320.CrossRefGoogle Scholar
Cappellini, E., Jensen, L. J., Szklarczyk, D., Ginolhac, A., da Fonseca, R. A., Stafford, Jr et al. (2011) Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins, Journal of Proteome Research 11(2), 917926.CrossRefGoogle ScholarPubMed
Cappellini, E., Collins, M. J. and Gilbert, M. T. P. (2014) Unlocking ancient protein palimpsests, Science 343(6177), 13201322.CrossRefGoogle ScholarPubMed
Dallongeville, S., Koperska, M., Garnier, N., Reille-Taillefert, G., Rolando, C. and Tokarski, C. (2011) Identification of animal glue species in artworks using proteomics: application to a 18th century gilt sample, Analytical Chemistry 83(24), 94319437.Google Scholar
Dallongeville, S., Garnier, N., Rolando, C. and Tokarski, C. (2015) Proteins in art, archaeology, and paleontology: from detection to identification, Chemical Reviews 116(1), 279.CrossRefGoogle ScholarPubMed
Fiddyment, S., Holsinger, B., Ruzzier, C., Devine, A., Binois, A., Albarella, U. et al. (2015) Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting, Proceedings of the National Academy of Sciences 112(49), 1506615071.CrossRefGoogle ScholarPubMed
Grosvenor, A. J., Morton, J. D. and Dyer, J. M. (2011) Proteomic characterisation of hydrothermal redox damage, Journal of the Science of Food and Agriculture 91(15), 28062813.CrossRefGoogle ScholarPubMed
Hausman, L. A. (1920) Structural characteristics of the hair of mammals, American Naturalist 54(635), 496523.CrossRefGoogle Scholar
Hill, R. C., Wither, M. J., Nemkov, T., Barrett, A., D’Alessandro, A., Dzieciatkowska, M. and Hansen, K. C. (2015) Preserved proteins from extinct Bison latifrons identified by tandem mass spectrometry; hydroxylysine glycosides are a common feature of ancient collagen, Molecular and Cellular Proteomics 14(7), 19461958.CrossRefGoogle ScholarPubMed
Hollemeyer, K., Altmeyer, W. and Heinzle, E. (2002) Identification and quantification of feathers, down, and hair of avian and mammalian origin using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Analytical Chemistry 74(23), 59605968.CrossRefGoogle ScholarPubMed
Hollemeyer, K., Altmeyer, W., Heinzle, E. and Pitra, C. (2008) Species identification of Oetzi’s clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair digests, Rapid Communications in Mass Spectrometry 22(18), 27512767.Google Scholar
Hollemeyer, K., Altmeyer, W., Heinzle, E. and Pitra, C. (2012) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with multidimensional scaling, binary hierarchical cluster tree and selected diagnostic masses improves species identification of Neolithic keratin sequences from furs of the Tyrolean Iceman Oetzi, Rapid Communications in Mass Spectrometry 26(16), 17351745.CrossRefGoogle ScholarPubMed
Hong, C., Jiang, H., , E., Wu, Y., Guo, L., Xie, Y., Wang, C. and Yang, Y. (2012) Identification of milk component in ancient food residue by proteomics, PLOS ONE 7(5), e37053.CrossRefGoogle ScholarPubMed
Hughes, M. A., Jones, D. S. and Connolly, R. C. (1986) Body in the bog but no DNA, Nature 323(6085), 208208.Google Scholar
Hynek, R., Kuckova, S., Hradilova, J. and Kodicek, M. (2004) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings, Rapid Communications in Mass Spectrometry 18(17), 18961900.Google Scholar
Jakes, K. A., Sibley, L. R. and Yerkes, R. (1994) A comparative collection for the study of fibres used in prehistoric textiles from eastern North America, Journal of Archaeological Science 21(5), 641650.Google Scholar
Juchauld, F., Bonnenberger, P. and Komenda, A. (2010) Identification de l’espèce animale des cuirs de reliure et des parchemins, in Matériaux du livre médiéval, ed. Zerdoun Bat-Yehouda, M. and Bourlet, C., Turnhout, 1328.Google Scholar
Kinter, M. and Sherman, N. E. (2005) Protein Sequencing and Identification Using Tandem Mass Spectrometry, New York.Google Scholar
Kirby, D. P., Buckley, M., Promise, E., Trauger, S. A. and Holdcraft, T. R. (2013) Identification of collagen-based materials in cultural heritage, Analyst 138(17), 48494858.CrossRefGoogle ScholarPubMed
Li, L., Gong, Y., Yin, H. and Gong, D. (2015) Different types of peptide detected by mass spectrometry among fresh silk and archaeological silk remains for distinguishing modern contamination, PLOS ONE 10(7), e0132827.CrossRefGoogle ScholarPubMed
Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature 362(6422), 709715.CrossRefGoogle ScholarPubMed
Meyer, W., Hülmann, G. and Seger, H. (2002) REM-Atlas zur Haarkutikulastruktur mitteleuropäischer Säugetiere, Hanover.Google Scholar
O’Sullivan, N. J., Teasdale, M. D., Mattiangeli, V., Maixner, F., Pinhasi, R., Bradley, D. G. and Zink, A. (2016) A whole mitochondria analysis of the Tyrolean Iceman’s leather provides insights into the animal sources of Copper Age clothing, Scientific Reports 6, 31279.Google Scholar
Ostrom, P. H., Schall, M., Gandhi, H., Shen, T.-L., Hauschka, P. V., Strahler, J. R. and Gage, D. A. (2000) New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry, Geochimica et Cosmochimica Acta 64(6), 10431050.Google Scholar
Ostrom, P. H., Gandhi, H., Strahler, J. R., Walker, A. K., Andrews, P. C., Leykam, J. et al. (2006) Unraveling the sequence and structure of the protein osteocalcin from a 42ka fossil horse, Geochimica et Cosmochimica Acta 70(8), 20342044.Google Scholar
Parker, G. J., Leppert, T., Anex, D. S., Hilmer, J. K., Matsunami, N., Baird, L., et al. (2016) Demonstration of protein-based human identification using the hair shaft proteome, PLOS ONE 11(9), e0160653.Google Scholar
Petersen, S., Nielsen, O. F., Christensen, D. H., Edwards, H. G. M., Farwell, D. W., David, R. et al. (2003) Near-infrared Fourier transform raman spectroscopy of skin samples from the Tomb of the Two Brothers, Khnum-Nakht and Nekht-Ankh, XIIth dynasty Egyptian mummies (ca 2000 bc), Journal of Raman Spectroscopy 34(5), 375379.Google Scholar
Reed, R. (1972) Ancient Skins, Parchments and Leathers, London.Google Scholar
Ryder, M. L. (1964) Parchment: its history, manufacture and composition, Journal of the Society of Archivists 2(9), 391399.Google Scholar
Shevchenko, A., Yang, Y., Knaust, A., Verbavatz, J.-M., Mai, H., Wang, B. et al. (2017) Open sesame: Identification of sesame oil and oil soot ink in organic deposits of Tang dynasty lamps from Astana necropolis in China, PLOS ONE 12(2), e0158636.Google Scholar
Skals, I. and Mannering, U. (2014) Investigating wool fibres from Danish prehistoric textiles, Archaeological Textiles Review 56, 2434.Google Scholar
Smith, G. D. and Clark, R. J. H. (2004) Raman microscopy in archaeological science, Journal of Archaeological Science 31(8), 11371160.Google Scholar
Solazzo, C., Fitzhugh, W. W., Rolando, C. and Tokarski, C. (2008) Identification of protein remains in archaeological potsherds by proteomics, Analytical Chemistry 80(12), 45904597.Google Scholar
Solazzo, C., Heald, S., Ballard, M. W., Ashford, D. A., DePriest, P. T., Koestler, R. J. and Collins, M. J. (2011) Proteomics and Coast Salish blankets: a tale of shaggy dogs? Antiquity 85(330), 14181432.Google Scholar
Solazzo, C., Wadsley, M., Dyer, J. M., Clerens, S., Collins, M. J. and Plowman, J. (2013a) Characterisation of novel α-keratin peptide markers for species identification in keratinous tissues using mass spectrometry, Rapid Communications in Mass Spectrometry 27(23), 26852698.CrossRefGoogle ScholarPubMed
Solazzo, C., Dyer, J. M., Clerens, S., Plowman, J., Peacock, E. E. and Collins, M. J. (2013b) Proteomic evaluation of the biodegradation of wool fabrics in experimental burials, International Biodeterioration and Biodegradation 80(Supplement C), 4859.Google Scholar
Solazzo, C., Rogers, P. W., Weber, L., Beaubien, H. F., Wilson, J. and Collins, M. (2014) Species identification by peptide mass fingerprinting (PMF) in fibre products preserved by association with copper-alloy artefacts, Journal of Archaeological Science 49(Supplement C), 524535.CrossRefGoogle Scholar
Teerink, B. (1991) Hair of western European mammals: atlas and identification, Cambridge.Google Scholar
Thiede, B., Höhenwarter, W., Krah, A., Mattow, J., Schmid, M., Schmidt, F. and Jungblut, P. R. (2005) Peptide mass fingerprinting, Methods 35(3), 237247.CrossRefGoogle ScholarPubMed
Tokarski, C., Martin, E., Rolando, C. and Cren-Olivé, C. (2006) Identification of proteins in Renaissance paintings by proteomics, Analytical Chemistry 78(5), 14941502.Google Scholar
Vuissoz, A., Worobey, M., Odegaard, N., Bunce, M., Machado, C. A., Lynnerup, N. et al. (2007) The survival of PCR-amplifiable DNA in cow leather, Journal of Archaeological Science 34(5), 823829.Google Scholar
Wildman, A. B. (1954) The Microscopy of Animal Textile Fibres: Including Methods for the Complete Analysis of Fibre Blends, Leeds.Google Scholar
Williams, A. C., Edwards, H. G. M. and Barry, B. W. (1995) The ‘Iceman’: molecular structure of 5200-year-old skin characterised by raman spectroscopy and electron microscopy, Biochimica et Biophysica Acta (BBA): Protein Structure and Molecular Enzymology 1246(1), 98105.Google Scholar
Yang, Y., Shevchenko, A., Knaust, A., Abuduresule, I., Li, W., Hu, X., Wang, C. and Shevchenko, A. (2014) Proteomics evidence for kefir dairy in Early Bronze Age China, Journal of Archaeological Science 45, 178186.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×