Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T21:57:26.590Z Has data issue: false hasContentIssue false

Chapter 1 - A Brief History of Thalamus Research

from Section 1: - History

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Modern views on thalamus structure and function are the outcome of a long process of scientific discovery that started centuries ago and is still ongoing. As for other brain systems, strides along this path followed, to a large extent, from the introduction of new research tools capable of providing increasingly accurate delineations of neuronal connections and functional properties. These discoveries, in turn, expanded or corrected previous theories about thalamus operation and the contributions of the thalamus to behavior. Here, I summarize the key steps of this process, from the early descriptions of macroscopic anatomy and lesion effects through electrophysiological, neurochemical, and pathway-tracing studies to current connectomic, functional, and transcriptome investigations at the single-cell and brain-wide level.

Type
Chapter
Information
The Thalamus , pp. 1 - 26
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, ED. (1941) Afferent discharges to the cerebral cortex from peripheral sense organs. J Physiol. 100:159191. doi: 10.1113/jphysiol.1941.sp003932.CrossRefGoogle Scholar
Ahlsén, G. (1984) Brain stem neurones with differential projection to functional subregions of the dorsal lateral geniculate complex in the cat. Neuroscience. 12:817838. doi: 10.1016/0306-4522(84)90173-8.Google Scholar
Akert, K. (1964) Comparative anatomy of the frontal cortex and thalamocortical connections. In Warren, JM and Akert, K (eds.), The frontal granular cortex and behavior. New York: McGraw-Hill, pp. 372396.Google Scholar
Allen Mouse Common Coordinate Framework and Reference Atlas. (October 2017) Technical White paper. v.3. alleninstitute.org.Google Scholar
Andersen, P, Andersson, SA. (1968) Physiological basis of the alpha rhythm. New York: Appleton-Century-Crofts.Google Scholar
Andersen, P, Sears, TA. (1964) The role of inhibition in the phasing of spontaneous thalamo-cortical discharge. J Physiol. 173:459480. doi:10.1113/jphysiol.1964.sp007468.CrossRefGoogle ScholarPubMed
Angelucci, A, Clascá, F, Sur, M. (1996) Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods. 65:101112. doi: 10.1016/0165-0270(95)00155-7.CrossRefGoogle ScholarPubMed
Arcelli, P, Frassoni, C, Regondi, MC, Biasi, SD, Spreafico, R. (1997) GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull. 42:2737. DOI: 10.1016/S0361-9230(96)00107-4CrossRefGoogle ScholarPubMed
Asanuma, C, Andersen, RA, Cowan, WM. (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol. 241(3):357381. doi: 10.1002/cne.902410309.CrossRefGoogle ScholarPubMed
Atasoy, D, Aponte, Y, Su, HH, Sternson, SM. (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 70257030. doi:10.1523/JNEUROSCI.1954–08.2008.Google Scholar
Bal, T, McCormick, DA. (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol. 468:669–91. doi: 10.1113/jphysiol.1993.sp019794.CrossRefGoogle ScholarPubMed
Beierlein, M. (2014) Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons. J Physiol. Oct 1;592(19):41374145. doi: 10.1113/jphysiol.2014.277376.Google Scholar
Bentivoglio, M, Kuypers, HG, Catsman-Berrevoets, CE, Loewe, H, Dann, O. (1980) Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci Lett. 18:2530. doi: 10.1016/0304-3940(80)90208-6.Google Scholar
Berger, H. (1929) Uber das Elektrenkephalogramm des Menschen. Archiv Psychiat Nervenkr. 87:527570.Google Scholar
Bonjean, M, Baker, T, Bazhenov, M, Cash, S, Halgren, E, Sejnowski, T. (2012) Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization. J Neurosci. 32:52505263. doi: 10.1523/JNEUROSCI.6141-11.2012.CrossRefGoogle ScholarPubMed
Bourassa, J, Pinault, D, Deschênes, M. (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci. 7:1930. doi: 10.1111/j.1460-9568.1995.tb01016.x.CrossRefGoogle Scholar
Bowling, DB, Michael, CR. (1980) Projection patterns of single physiologically characterized optic tract fibres in cat. Nature. 286:899902. doi: 10.1038/286899a0.CrossRefGoogle ScholarPubMed
Bowling, DB, Michael, CR. (1984) Terminal patterns of single, physiologically characterized optic tract fibers in the cat’s lateral geniculate nucleus. J Neurosci. 4:198216. doi: 10.1523/JNEUROSCI.04-01-00198.1984.Google Scholar
Bremer, F. (1937) L’activité cèrèbrale au cours du sommeil et de la narcose. Contribution à l’êtude du mêcanisme du sommeil. Bull Acad Roy Med Belg. 4: 6886.Google Scholar
Briggs, F. (2020) Role of feedback connections in central visual processing. Annu Rev Vis Sci. 6:313334. doi: 10.1146/annurev-vision-121219-081716.Google Scholar
Bright, R. (1837) Cases and observations illustrative of diagnosis where tumors are situated at the base of the brain; or where other parts of the brain and spinal cord suffer lesion from disease. Guy’s Hosp Rep. 2:279310 (cited by Jones 2007).Google Scholar
Broca, P. (1861). Perte de la parole, ramollissement chronique et destruction partielle du lobe antérieur gauche. Bulletin de la Société d’Anthropologie 2: 235238.Google Scholar
Burdach, KF. (1822) Vom Baue und Leben des Gehirns. Vol 2. Leipzig: Dyk’schen Buchhandlung.Google Scholar
Burns, BD. (1950) Some properties of the cat’s isolated cerebral cortex. J Physiol. 111:5068. doi: 10.1113/jphysiol.1950.sp004463.Google Scholar
Burton, H, Jones, EG. (1976) The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol. 168:249301. doi: 10.1002/cne.901680204.Google Scholar
Cajal, S. Ramón y. (1900) Contribución al estudio de la via sensitiva centgraly estructura del tálamo óptico. Rev Trim Micrograf 5:185198.Google Scholar
Cajal, S. Ramón y. (1903) Estudios talámicos. Trab lab Invest Biol Univ Madrid 2:3169.Google Scholar
Cappe, C, Morel, A, Barone, P, Rouiller, EM. (2009) The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay. Cereb Cortex. 19:20252037. doi: 10.1093/cercor/bhn228.Google Scholar
Carey, RG, Fitzpatrick, D, Diamond, IT. (1979a) Layer I of striate cortex of Tupaia glis and Galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J Comp Neurol. 186:393437. doi: 10.1002/cne.901860306.Google Scholar
Carey, RG, Fitzpatrick, D, Diamond, IT. (1979b) Thalamic projections to layer I of striate cortex shown by retrograde transport of horseradish peroxidase. Science. 203:556559. doi: 10.1126/science.760205.CrossRefGoogle ScholarPubMed
Catsman-Berrevoets, CE, Kuypers, HG. (1978). Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median. An HRP study in the cynomolgus monkey. Brain Res. 154:359365. doi: 10.1016/0006-8993(78)90706-0.Google Scholar
Chamberlin, NL, Du, B, de Lacalle, S, Saper, CB. (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res. 793(1–2), 169175. doi:10.1016/s0006-8993(98)00169-3.Google Scholar
Chung, JW, Hassler, R, Wagner, A. (1977) Degeneration of two of nine types of synapses in the putamen after center median coagulation in the cat. Exp Brain Res. 28:345361. doi: 10.1007/BF00235716.Google Scholar
Clascá, F, Angelucci, A, Sur, M. (1995) Layer-specific programs of development in neocortical projection neurons. Proc Natl Acad Sci USA. 92:1114511149. doi: 10.1073/pnas.92.24.11145.Google Scholar
Clascá, F, Llamas, A, Reinoso-Suárez, F. (1997) Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. J Comp Neurol. 384:456482. doi: 10.1002/(sici)1096-9861(19970804)384:3<456::aid-cne10>3.0.co;2-h.Google Scholar
Collins, DP, Anastasiades, PG, Marlin, JJ, Carter, AG. (2018) Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron. 98:366379. doi: 10.1016/j.neuron.2018.03.024.Google Scholar
Colonnier, M, Guillery, RW. (1964) Synaptic organization in the lateral geniculate nucleus of the monkey. Z Zellforsch Mikrosk Anat. 62:333355. doi: 10.1007/BF00339284.Google Scholar
Conrad, LC, Leonard, CM, Pfaff, DW. (1974) Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J Comp Neurol. 156:179205. doi: 10.1002/cne.901560205.Google Scholar
Cowan, WM, Gottlieb, DI, Hendrickson, AE, Price, JL, Woolsey, TA. (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 37(1):2151. doi:10.1016/0006-8993(72)90344-7.Google Scholar
Cox, CL. (2014) Complex regulation of dendritic transmitter release from thalamic interneurons. Curr Opin Neurobiol. 29:126132. doi: 10.1016/j.conb.2014.07.004.Google Scholar
Crick, F. (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA. 81:45864590. doi: 10.1073/pnas.81.14.4586.Google Scholar
Cruikshank, SJ, Ahmed, OJ, Stevens, TR, Patrick, SL, Gonzalez, AN, Elmaleh, M, Connors, BW. (2012). Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci. 32:1781317823. doi: 10.1523/JNEUROSCI.3231-12.2012.Google Scholar
de Barenne, JG Dusser, McCulloch, WS. (1938) The direct functional interrelation of sensory cortex and optic thalamus. J Neurophysiol. 1:176186. doi:10.1152/jn.1938.1.2.176.CrossRefGoogle Scholar
Déjerine, J, Roussy, G. (1906) Le syndrome thalamique. Revue de Neurologie (Paris). 14: 132.Google Scholar
Déjerine, JJ. (1901) Anatomie des centres nerveux (with Dejerine-Klumpke, AM). París: J. Rueff.Google Scholar
Dempsey, EW, Morison, RS. (1942) The production of rhythmically recurrent cortical potentials after localized thalamic stimulation. Amer J Physiol. 135:293300.Google Scholar
Deschênes, M, Bourassa, J, Doan, VD, Parent, A. (1996) A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat. Eur J Neurosci. 8:329343. doi: 10.1111/j.1460-9568.1996.tb01217.x.Google Scholar
Deschênes, M, Bourassa, J, Pinault, D. (1994) Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 664:215219. doi: 10.1016/0006-8993(94)91974-7.CrossRefGoogle Scholar
Deschênes, M, Veinante, P, Zhang, ZW. (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev. 28:286308. doi: 10.1016/s0165-0173(98)00017-4.Google Scholar
Desmedt, JE, Tomberg, C. (1994) Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci Lett. Feb 28;168(1–2):126129. doi: 10.1016/0304-3940(94)90432-4.Google Scholar
Diamond, IT, Jones, EG, Powell, TPS. (1969) The projection of the auditory cortex upon the diencephalon and brainstem in the cat. Brain Res. 15:305340.Google Scholar
Dingledine, R, Kelly, JS. (1977) Brain stem stimulation and the acetylcholine-evoked inhibition of neurones in the feline nucleus reticularis thalami. J Physiol. Sep;271(1):135154. doi: 10.1113/jphysiol.1977.sp011994.CrossRefGoogle ScholarPubMed
Economo, C. von. (1911) Über dissoziierte Empfindungslähmung bei Ponstumoren und über die zentralen Bahnen des sensiblen Trigeminus. Jahrb Psychiatr Neurol 32: 107138.Google Scholar
Economo, MN, Clack, NG, Lavis, LD, Gerfen, CR, Svoboda, K, Myers, EW, Chandrashekar, J. (2016) A platform for brain-wide imaging and reconstruction of individual neurons. eLife. Jan 20;5:e10566. doi: 10.7554/eLife.10566.Google Scholar
Ferrier, D. (1886) The functions of the brain, 2nd ed. London: Smith Elder.Google Scholar
Fink, RP, Heimer, L. (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4:369374. doi: 10.1016/0006-8993(67)90166-7.CrossRefGoogle ScholarPubMed
FIPAT. (February 2017) Terminologia Neuroanatomica. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, Ch. 1, pp. 5557.Google Scholar
Flourens, P. (1824) Recherches Experimentales Sur Les Proprietes Et Les Fonctions Du Systeme Nerveux, Dans Les Animaux Vertebres. Kessinger Publishing LLC (facsímil) 2010.Google Scholar
Forel, A. (1877) Untersuchungen über die Haubenregion und ihre oberen Verknüpfungen im Gehirne des Menschen und einiger Säugethiere, mit Beiträgen zu den Methoden der Gehirnuntersuchung. Archiv für Psychiatrie und Nervenkrankheiten 7:393495.doi: 10.1007/BF02041873.Google Scholar
Friedemann, M. (1912) Die Cytoarchitektonik des Zwischenhirns der Cercopitheken, mit besonderer Berücksichtigung des Thalamus opticus. J für Psychologie Neurologie (Leipzig) 18:309378.Google Scholar
Friedlander, MJ, Lin, CS, Stanford, LR, Sherman, SM. (1981) Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol. 46:80129. doi: 10.1152/jn.1981.46.1.80.Google Scholar
Fritsch, G, Hitzig, E. (1870) Ueber die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Wiss Med. 37:300332.Google Scholar
Fujiyama, F, Furuta, T, Kaneko, T. (2001) Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol. 435:379387.Google Scholar
Furuta, T, Tomioka, R, Taki, K, Nakamura, K, Tamamaki, N, Kaneko, T. (2001). In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem. 49:14971508.Google Scholar
Gailloud, P, Carota, A, Bogousslavsky, J, Fasel, J. (2003) Histoire de l’anatomie du thalamus de l’antiquité à la fin du XIXe siècle. Schw Arch Nerorl Psychiatr. 154:4958.Google Scholar
Galambos, R, Rose, JE, Bromiley, RB, Hughes, JR. (1952) Microelectrode studies on medial geniculate body of cat. II. Response to clicks. J Neurophysiol. 15:359380. doi: 10.1152/jn.1952.15.5.359.CrossRefGoogle ScholarPubMed
García-Cabezas, MA, Martínez-Sánchez, P, Sánchez-González, MA, Garzón, M, Cavada, C. (2009) Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex. 19:424434. doi: 10.1093/cercor/bhn093.Google Scholar
García-Cabezas, MA, Pérez-Santos, I, Cavada, C. (2021) The epic of the thalamus in anatomical language. Front Neuroanat. 15:744095. doi: 10.3389/fnana.2021.744095.CrossRefGoogle ScholarPubMed
Gerfen, CR, Sawchenko, PE. (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res. 290:219238. doi: 10.1016/0006-8993(84)90940-5.CrossRefGoogle ScholarPubMed
Gerlach, J. (1858) Mikroskopische Studien aus dem Gebiet der Menschlichen Morphologie. Erlange: Enke.Google Scholar
Gilbert, CD, Kelly, JP. (1975) The projections of cells in different layers of the cat’s visual cortex. J Comp Neurol. 163:81105. doi: 10.1002/cne.901630106.Google Scholar
Godement, P, Vanselow, J, Thanos, S, Bonhoeffer, F. (1987) A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development. 101:697713.Google Scholar
Golgi, C. (1873). Sulla Struttura della Sostanza Grigia del Cervello. Gazzetta Medica Italiana-Lombardia.33:244246.Google Scholar
Gonatas, NK, Harper, C, Mizutani, T, Gonatas, JO. (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J Histochem Cytochem. 27(3):728734. doi:10.1177/27.3.90065.Google Scholar
Gray, EG, Hamlyn, LH. (1962) Electron microscopy of experimental degeneration in the avian optic tectum. J Anat. 96:309316.5.Google Scholar
Graybiel, AM, Berson, DM. (1980) Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience. 5:1175–238. doi: 10.1016/0306-4522(80)90196-7.CrossRefGoogle ScholarPubMed
Groenewegen, HJ, Berendse, HW. (1994) The specificity of the “nonspecific” midline and intralaminar thalamic nuclei. Trends Neurosci. 17:5257. doi: 10.1016/0166-2236(94)90074-4.Google Scholar
Groh, A, Bokor, H, Mease, RA, Plattner, VM, Hangya, B, Stroh, A, Deschenes, M, Acsády, L. (2014) Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex. 24:31673179. doi: 10.1093/cercor/bht173.CrossRefGoogle ScholarPubMed
Gudden, B. (1870) Experimental Untersuchungen über das peripherische und central Nervensystem, Arch Psychiat Nervenkr 2:693723.CrossRefGoogle Scholar
Guillery, RW. (1967) Patterns of fiber degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex. J Comp Neurol. 130:197221. doi: 10.1002/cne.901300303.Google Scholar
Guillery, RW. (1969) The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat. 96:138. doi: 10.1007/BF00321474.Google Scholar
Guillery, RW. (1995) Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat. 187:583592.Google Scholar
Guillery, RW, Sherman, SM. (2002a) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 33:163175. doi: 10.1016/s0896-6273(01)00582-7.Google Scholar
Guillery, RW, Sherman, SM. (2002b) The thalamus as a monitor of motor outputs. Philos Trans R Soc Lond B Biol Sci. 357:18091821. doi: 10.1098/rstb.2002.1171.Google Scholar
Halassa, MM, Acsády, L. (2016) Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci. 39:680693. doi: 10.1016/j.tins.2016.08.001.Google Scholar
Hallanger, AE, Levey, AI, Lee, HJ, Rye, DB, Wainer, BH. (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol. 262:105–24. doi: 10.1002/cne.902620109.CrossRefGoogle Scholar
Hamos, JE, Van Horn, SC, Raczkowski, D, Sherman, SM. (1987) Synaptic circuits involving an individual retinogeniculate axon in the cat. J Comp Neurol. 259:165–92. doi: 10.1002/cne.902590202Google Scholar
Hamos, JE, Van Horn, SC, Raczkowski, D, Uhlrich, DJ, Sherman, SM. (1985) Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317:618621. doi: 10.1038/317618a0.Google Scholar
Hashikawa, T, Rausell, E, Molinari, M, Jones, EG. (1991) Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Res. 544:335341. doi: 10.1016/0006-8993(91)90076-8.Google Scholar
Hendry, SH, Yoshioka, TA. (1994) neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575577. doi: 10.1126/science.8160015.Google Scholar
Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science. 207:532535.Google Scholar
Herkenham, M. (1986) New perspectives on the organization and evolution of nonspecific thalamocortical projections. In Jones, EG and Peters, A (eds.), Cerebral cortex, vol. 5. New York: Plenum, pp. 403445.Google Scholar
Hirai, T, Jones, EG. (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Brain Res Rev. 14:134. doi: 10.1016/0165-0173(89)90007-6.Google Scholar
Hirsch, JA, Wang, X, Sommer, FT, Martinez, LM. (2015) How inhibitory circuits in the thalamus serve vision. Ann Rev Neurosci. 38:309329. DOI: 10.1146/annurev-neuro-071013-014229.Google Scholar
Hong, JH, Bai, DS, Jeong, JY, Choi, BY, Chang, CH, Kim, SH, Ahn, SH, Jang, SH. (2010) Injury of the spino-thalamo-cortical pathway is necessary for central post-stroke pain. Eur Neurol. 64:163168. doi: 10.1159/000319040.Google Scholar
Hoogland, PV, Welker, E, Van der Loos, H. (1987) Organization of the projections from barrel cortex to thalamus in mice studied with phaseolus vulgaris-leucoagglutinin and HRP. Exp Brain Res. 68:7387. doi: 10.1007/BF00255235.Google Scholar
Houser, CR, Vaughn, JE, Barber, RP, Roberts, E. (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 200:341354. doi: 10.1016/0006-8993(80)90925-7.Google Scholar
Hubel, DH, Wiesel, TN. (1961) Integrative action in the cat’s lateral geniculate body J. Physiol. 155:385398.Google Scholar
Jackson, JH. (1864) Illustrations on the diseases of the nervous system. London Hosp Clin Lect Rep. 3:337387 (cited by Jones 2007).Google Scholar
Jackson, JH. (1866) Note on the functions of the optic thalamus. London Hosp Clin Lect. 3:373377.Google Scholar
Jager, P, Moore, G, Calpin, P, Durmishi, X, Salgarella, I, Menage, L, Kita, Y, Wang, Y, Kim, DW, Blackshaw, S, Schultz, SR, Brickley, S, Shimogori, T, Delogu, A. (2021) Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife. 10:e59272. doi: 10.7554/eLife.59272.Google Scholar
Jahnsen, H, Llinás, R. (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 349:205226. doi: 10.1113/jphysiol.1984.sp015153.Google Scholar
Jahnsen, H, Llinás, R. (1984b) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol. 349:227247. doi: 10.1113/jphysiol.1984.sp015154.Google Scholar
Jasper, H. (1949) Diffuse projection systems: the integrative action of the thalamic reticular system. Electroencephalogr Clin Neurophysiol. 1:405419; discussion 419420.Google Scholar
Jasper, H, Ajmone-Marsan, C. (1954) A stereotaxic atlas of the diencephalon of the cat. Ottawa: Nat. Res. Council Canada.Google Scholar
Jasper, HH. (1960) Unspecific thalamocortical relations. In Field, J, Magoun, HW, and Hall, VE (eds.), Handbook of physiology. Section 1: Neurophysiology, Vol. II. Washington, DC: American Physiological Society, pp. 1307–1321.Google Scholar
Jones, EG. (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol. 162:285308. doi: 10.1002/cne.901620302.Google Scholar
Jones, EG. (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience. 85:331345. doi: 10.1016/s0306-4522(97)00581-2.CrossRefGoogle ScholarPubMed
Jones, EG. (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24:595601. doi: 10.1016/s0166-2236(00)01922-6.Google Scholar
Jones, EG. (2007). The thalamus. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Jones, EG. (2009) Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann N Y Acad Sci. 1157:1023. doi: 10.1111/j.1749-6632.2009.04534.x.Google Scholar
Jones, EG, Hendry, SH. (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci. 1:222246. doi: 10.1111/j.1460-9568.1989.tb00791.x.Google Scholar
Jones, EG, Leavitt, RY. (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol. 154:349377. doi: 10.1002/cne.901540402.Google Scholar
Jones, EG, Powell, TPS. (1970) Connexions of the somatic sensory cortex of the rhesus monkey. III. Thalamic connexions. Brain. 93:3756. doi: 10.1093/brain/93.1.37.Google Scholar
Ju, G, Han, ZS, Fan, LZ. (1989). Fluorogold as a retrograde tracer used in combination with immunohistochemistry. J Neurosci Meth. 1:6972.Google Scholar
Kaas, JH, Guillery, RW, Allman, JM. (1972) Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav Evol. 6:253299. doi: 10.1159/000123713.CrossRefGoogle ScholarPubMed
Kaas, JH, Huerta, MF, Weber, JT, Harting, JK. (1978) Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J Comp Neurol. 182:517553. doi: 10.1002/cne.901820308.Google Scholar
Kaas, JH, Lyon, DC. (2007) Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res Rev. 55:285296. doi: 10.1016/j.brainresrev.2007.02.008. Epub 2007 Mar 12.Google Scholar
Kakei, S, Na, J, Shinoda, Y. (2001) Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. J Comp Neurol. 437:170185. doi: 10.1002/cne.1277.Google Scholar
Katz, LC, Burkhalter, A, Dreyer, WJ. (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310:498500.Google Scholar
Kemp, JM, Powell, TPS. (1971a) The site of termination of afferent fibres in the caudate nucleus. Philos Trans R Soc Lond B Biol Sci. 262:413427. doi: 10.1098/rstb.1971.0104.Google Scholar
Kemp, JM, Powell, TPS. (1971b) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond B Biol Sci. 262:429439. doi: 10.1098/rstb.1971.0105.Google Scholar
Killackey, HP, Ebner, FF (1972) Two different types of thalamocortical projections to a single cortical area in mammals. Brain Behav Evol. 6:141169. doi: 10.1159/000123703.Google Scholar
Killackey, H, Ebner, F. (1973) Convergent projection of three separate thalamic nuclei on to a single cortical area. Science 179:283285. doi: 10.1126/science.179.4070.283.Google Scholar
Kishan, AU, Lee, CC, Winer, JA. (2008) Branched projections in the auditory thalamocortical and corticocortical systems. Neuroscience. 154:283293. doi: 10.1016/j.neuroscience.2008.01.010.Google Scholar
Krishnan, GP, Rosen, BQ, Chen, JY, Muller, L, Sejnowski, TJ, Cash, SS, Halgren, E, Bazhenov, M. (2018) Thalamocortical and intracortical laminar connectivity determines sleep spindle properties. PLoS Comput Biol. 14(6):e1006171. doi: 10.1371/journal.pcbi.1006171.Google Scholar
Kuramoto, E, Furuta, T, Nakamura, KC, Unzai, T, Hioki, H, Kaneko, T. (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex. 19:20652077. doi: 10.1093/cercor/bhn231.Google Scholar
Kuypers, HG, Bentivoglio, M, Catsman-Berrevoets, CE, Bharos, AT. (1980). Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res. 40:383392. doi: 10.1007/BF00236147.Google Scholar
Lanciego, JL, Wouterlood, FG. (2020) Neuroanatomical tract-tracing techniques that did go viral. Brain Struct Funct. 225:11931224. doi: 10.1007/s00429-020-02041-6.Google Scholar
LaVail, JH, LaVail, MM. (1972) Retrograde axonal transport in the central nervous system. Science. 176:14161417. https://doi.org/10.1126/science.176.4042.1416.Google Scholar
Le Gros Clark, WE. (1932) The structure and connections of the thalamus. Brain. 55(3):406470. doi.org/10.1093/brain/55.3.406.Google Scholar
Le Gros Clark, WE, Boggon, RH. (1935) The thalamic connections of the parietal and frontal lobes of the brain in the monkey. Phil Trans. R Soc Lond. 141:467487. doi:10.1098/rstb.1935.0002.Google Scholar
Le Gros Clark, WE, Northfield, DWC. (1937) The cortical projection of the pulvinar in the macaque monkey Brain. 60:126142. doi: 10.1093/brain/60.1.126.Google Scholar
Le Gros Clark, WE, Powell, TPS. (1953) On the thalamo-cortical connexions of the general sensory cortex of Macaca. Proc R Soc Lond B Biol Sci. 141:467487. doi: 10.1098/rspb.1953.0054.Google Scholar
Lechner, J, Leah, JD, Zimmermann, M. (1993) Brainstem peptidergic neurons projecting to the medial and lateral thalamus and zona incerta in the rat. Brain Res. 603:4756. doi: 10.1016/0006-8993(93)91298-7.Google Scholar
Lee, CC, Sherman, SM. (2010) Drivers and modulators in the central auditory pathways. Front Neurosci. Apr 15;4:79. doi: 10.3389/neuro.01.014.2010.Google Scholar
Leger, L, Sakai, K, Salvert, D, Touret, M, Jouvet, M. (1975) Delineation of dorsal lateral geniculate afferents from the cat brain stem as visualized by the horseradish peroxidase technique. Brain Res. 93:490496. doi: 10.1016/0006-8993(75)90187-0.CrossRefGoogle ScholarPubMed
Letinic, K, Rakic, P. (2001) Telencephalic origin of human thalamic GABAergic neurons. Nature Neuroscience. 4:931936. DOI: 10.1038/nn0901-931.Google Scholar
Lewis, LD, Voigts, J, Flores, FJ, Schmitt, LI, Wilson, MA, Halassa, MM, Brown, EN. (2015) Thalamic reticular nucleus induces fast and local modulation of arousal state. eLife. Oct 13;4:e08760. doi: 10.7554/eLife.08760.Google Scholar
Llinás, R, Ribary, U, Contreras, D, Pedroarena, C. (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci. 353:18411849. doi: 10.1098/rstb.1998.0336.Google ScholarPubMed
Llinás, RR, Ribary, U, Jeanmonod, D, Kronberg, E, Mitra, PP. (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 96:1522215227. doi: 10.1073/pnas.96.26.15222.Google Scholar
Locke, S. (1967) Thalamic connections to insular and opercular cortex of monkey. J Comp Neurol. 129:219240. doi: 10.1002/cne.901290302.Google Scholar
Lorente de No, R. (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In Fulton, J (ed.), Physiology of the nervous system. London: Oxford University Press, pp. 291340.Google Scholar
Luys, JB. (1865) Recherches sur la système nerveux cerébrospinal: sa structure, ses functions, et ses maladies. Paris: Germer-Baillière.Google Scholar
Marchi, V, Algeri, G (1885) Sulle degenerazioni descendenti consecutive a lesioni sperimentale in diverse zone della corteccia cerebrale. Riv Freniat 11:492494.Google Scholar
Macchi, G, Bentivoglio, M, Minciacchi, D, Molinari, M. (1986) Organisation des connexions thalamiques. Rev Neurol (Paris). 142:267282.Google Scholar
Magendie, F. (1841) Leçons sur les Fonctions et les Maladies du Système Nerveux. Paris: Lecaplain. https://gallica.bnf.fr/ark:/12148/bpt6k61492609/f17.item.texteImage.Google Scholar
Mai, JK, Majtanik, M. (2019) Toward a common terminology for the thalamus. Front Neuroanat. Jan 11;12:114. doi: 10.3389/fnana.2018.00114.Google Scholar
Mathers, LH. (1972a) Ultrastructure of the pulvinar of the squirrel monkey. J Comp Neurol. 146:1542. doi: 10.1002/cne.901460103.Google Scholar
Mathers, LH. (1972b) The synaptic organization of the cortical projection to the pulvinar of the squirrel monkey. J Comp Neurol. 146:4360. doi: 10.1002/cne.901460104.Google Scholar
Meynert, T. (1872) Vom Gehirne des Säugetiere. In Stricker, S. (ed.), Handbuch der Lehre von den Geweben des Menschen und der Thiere. Leipzig: Engelman, pp. 694808.Google Scholar
Meynert, T. (1885) Psychiatry. A clinical treatise on diseases of the forebrain. London: Putnam’s Sons.Google Scholar
Minciacchi, D, Bentivoglio, M, Molinari, M, Kultas-Ilinsky, K, Ilinsky, IA, Macchi, G. (1986) Multiple cortical targets of one thalamic nucleus: the projections of the ventral medial nucleus in the cat studied with retrograde tracers. J Comp Neurol. 252:106129. doi: 10.1002/cne.902520107.Google Scholar
Molnár, Z, Blakemore, C. (1995) How do thalamic axons find their way to the cortex? Trends Neurosci. 18:389397. doi: 10.1016/0166-2236(95)93935-q.Google Scholar
Monakow, C Von. (1895). Experimentelle und pathologisch-anatomische Untersuchungen über die Haubenregion, den Sehhügel und die Regio subthalamica, nebst Beiträgen zur Kenntniss früh erworbener Gross- und Kleinhirn-defecte. Archiv f. Psychiatrie. 27:1128 doi: 10.1007/BF02076254.Google Scholar
Montero, VM, Guillery, RW. (1968) Degeneration in the dorsal lateral geniculate nucleus of the rat following interruption of the retinal or cortical connections. J Comp Neurol. 134:211242. doi: 10.1002/cne.901340208.CrossRefGoogle ScholarPubMed
Morel, A, Magnin, M, Jeanmonod, D. (2007) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol. 387:588630. doi: 10.1002/(sici)1096-9861(19971103)387:4<588::aid-cne8>3.0.co;2-z.Google Scholar
Morison, RS, Bassett, DL. (1945) Electrical activity of the thalamus and basal ganglia in decorticate cats. J Neurophysiol. 8:309314.Google Scholar
Morison, RS, Finley, KH, Lothrop, GN. (1943). Spontaneous electrical activity of the thalamus and other forebrain structures. J Neurophysiol. 6:243254.Google Scholar
Morrison, JH, Foote, SL. (1986) Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. J Comp Neurol. 243:117138. doi: 10.1002/cne.902430110.Google Scholar
Moruzzi, G, Magoun, HW. (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1:455473.Google Scholar
Mott, FW. (1892) Ascending degenerations resulting from lesions of the spinal cord in monkeys. Brain 15:215229. https://doi.org/10.1093/brain/15.2.215.Google Scholar
Müller, EJ, Munn, B, Hearne, LJ, Smith, JB, Fulcher, B, Arnatkevičiūtė, A, Lurie, DJ, Cocchi, L, Shine, JM. (2020) Core and matrix thalamic sub-populations relate to spatio-temporal cortical connectivity gradients. Neuroimage. 222:117224. doi: 10.1016/j.neuroimage.2020.117224.Google Scholar
Nakagawa, Y. (2019) Development of the thalamus: From early patterning to regulation of cortical functions. Wiley Interdiscip Rev Dev Biol. Sep;8(5):e345. doi: 10.1002/wdev.345.Google Scholar
Nance, DM, Burns, J. (1990) Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res Bull. 25:139145. doi: 10.1016/0361-9230(90)90264-z.Google Scholar
Nauta, WJ, Gygax, PA. (1954) Silver impregnation of degenerating axons in the central nervous system: a modified technic. Stain Technol. 29:9193. https://doi.org/10.3109/10520295409115448.Google Scholar
Nieuwenhuys, R, Voogd, J, Van Huijzen, C. (2008) The human central nervous system: a synopsis and atlas, 4th ed. Berlin: Springer.Google Scholar
Nissl, F. (1894) Uber eine neue Untersuchungmethode des Centralorgans speciell zur Feststellung der Localisation der Nervenzellen. Neurol Centralblatt. 13:507508.Google Scholar
Nissl, F. (1913) Die Grosshirnanteile des Kaninchens. Archiv f. Psychiatrie 52:867953. https://doi.org/10.1007/BF02160485.Google Scholar
Nothias, F, Onteniente, B, Roudier, F, Peschanksi, M. (1988) Immunocytochemical study of serotoninergic and noradrenergic innervation of the ventrobasal complex of the rat thalamus. Neurosci Lett. 95:5963. doi: 10.1016/0304-3940(88)90632-5.Google Scholar
Nothnagel, CWH. (1873) Experimentelle Untersuchunge über dei Funktion des Gehirs. Virchows Ach path Anat. 57:184214.Google Scholar
Ojima, H. (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex. 4:646663. doi: 10.1093/cercor/4.6.646.Google Scholar
Parent, M, Parent, A. (2011) Jules Bernard Luys in Charcot’s penumbra. Front Neurol Neurosci. 29:125136. doi: 10.1159/000321782.Google Scholar
Paxinos, G, Franklin, K. (2019) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 5th ed. London: Academic Press–Elsevier.Google Scholar
Paxinos, G, Watson, C. (2007). The rat brain in stereotaxic coordinates. San Diego: Academic Press.Google Scholar
Paxinos, G, Watson, C, Petrides, M, Rosa, M, Tokuno, H. (2012) The marmoset brains in stereotaxic coordinates. London: Academic Press.Google Scholar
Pérez-Santos, I, Palomero-Gallagher, N, Zilles, K, Cavada, C. (2021) Distribution of the noradrenaline innervation and adrenoceptors in the macaque monkey thalamus. Cerebral Cortex. 31(9):41154139.Google Scholar
Phillips, JW, Schulmann, A, Hara, E, Winnubst, J, Liu, C, Valakh, V, Wang, L, Shields, BC, Korff, W, Chandrashekar, J, Lemire, AL, Mensh, B, Dudman, JT, Nelson, SB, Hantman, AW. (2019) A repeated molecular architecture across thalamic pathways. Nat Neurosci. 22:19251935. doi: 10.1038/s41593-019-0483-3.Google Scholar
Pickel, VM, Segal, M, Bloom, FE. (1974) A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J Comp Neurol. 155:1542. doi: 10.1002/cne.901550103.Google Scholar
Pinault, D. (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods. 65:113136. doi: 10.1016/0165-0270(95)00144-1.Google Scholar
Pinault, D, Deschênes, M. (1998) Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J Comp Neurol. 391:180203. doi: 10.1002/(sici)1096-9861(19980209)391:2<180::aid-cne3>3.0.co;2-z.Google Scholar
Poggio, GF, Mountcastle, VB. (1963) The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. J Neurophysiol. 26:775806. doi: 10.1152/jn.1963.26.5.775.Google Scholar
Purpura, DP. (1972) Intracellular studies of synaptic organization in the mammalian brain. In Pappas, GD and Purpura, DP (eds.), Structure and function of synapses. New York: Raven, pp. 257302.Google Scholar
Purpura, DP, Cohen, B. (1962) Intracellular recording from thalamic neurons during recruiting responses. J Neurophysiol. 25:621635. doi: 10.1152/jn.1962.25.5.621.Google Scholar
Purpura, DP, Shofer, RJ. (1963) Intracellular recording from thalamic neurons during reticulocortical activation. J Neurophysiol. 26:494505. doi: 10.1152/jn..26.3.494.Google Scholar
Purushothaman, G, Marion, R, Li, K, Casagrande, VA. (2012) Gating and control of primary visual cortex by pulvinar. Nat Neurosci. 15:905912. doi: 10.1038/nn.3106.Google Scholar
Raczkowski, D, Fitzpatrick, D. (1989) Organization of cholinergic synapses in the cat’s dorsal lateral geniculate and perigeniculate nuclei. J Comp Neurol. 288:676690. doi: 10.1002/cne.902880412.Google Scholar
Radtke-Schuller, S. (2018) Cyto- and myeloarchitectural brain atlas of the ferret (Mustela putorius) in MRI aided stereotaxic coordinates. New York: Springer.Google Scholar
Rausell, E, Avendaño, C. (1985) Thalamocortical neurons projecting to superficial and to deep layers in parietal, frontal and prefrontal regions in the cat. Brain Res. 347:159165. doi: 10.1016/0006-8993(85)90905-9.Google Scholar
Rausell, E, Bae, CS, Viñuela, A, Huntley, GW, Jones, EG. (1992) Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. J Neurosci. 12:40884111. doi: 10.1523/JNEUROSCI.12-10-04088.Google Scholar
Rausell, E, Jones, EG. (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci. 11:226237. doi: 10.1523/JNEUROSCI.11-01-00226.1991.Google Scholar
Reinoso-Suárez, F. (1961) Topographischer Hirnatlas der Katze. Darmstadt: E. Merck.Google Scholar
Rico, B, Cavada, C. (1998) Adrenergic innervation of the monkey thalamus: an immunohistochemical study. Neuroscience. 84:839847. doi: 10.1016/s0306-4522(97)00549-6.Google Scholar
Rikhye, RV, Wimmer, RD, Halassa, MM. (2018) Toward an integrative theory of thalamic function. Ann Rev Neurosci. 41:163183. doi: 10.1146/annurev-neuro-080317-062144.Google Scholar
Riolan, J. (1626) Antropograhia et ostheologia. Paris: Moreau.Google Scholar
Robson, JA. (1983) The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat. J Comp Neurol. 216:89103. doi: 10.1002/cne.902160108.Google Scholar
Rocca, J. (2003) Galen on the brain: anatomical knowledge and physiological speculation in the second century AD, Studies in Ancient Medicine, vol. 26. Leiden: Brill.Google Scholar
Rodriguez-Moreno, J, Porrero, C, Rollenhagen, A, Rubio-Teves, M, Casas-Torremocha, D, Alonso-Nanclares, L, Yakoubi, R, Santuy, A, Merchan-Pérez, A, DeFelipe, J, Lübke, JHR, Clascá, F. (2020) Area-specific synapse structure in branched posterior nucleus axons reveals a new level of complexity in thalamocortical networks. J Neurosci. 40:26632679. doi: 10.1523/JNEUROSCI.2886-19.2020.Google Scholar
Rose, JE, Mountcastle, VB. (1952) The thalamic tactile region in rabbit and cat. J Comp Neurol. 97:441489. doi: 10.1002/cne.900970303.Google Scholar
Rose, JE, Woolsey, CN. (1943) A study of thalamo-cortical relations in the rabbit. Bull Johns Hopkins Hosp. 73:65128.Google Scholar
Rose, JE, Woolsey, CN. (1949a) Organization of the mammalian thalamus and its relationships to the cerebral cortex. Electroencephalogr Clin Neurophysiol. 1:391403.Google Scholar
Rose, JE, Woolsey, CN. (1949b) The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J Comp Neurol. 91:441466. doi: 10.1002/cne.900910306.Google Scholar
Rose, JE, Woolsey, CN. (1958) Cortical connections and functional organization of thalamic auditory system in the cat. In Harlow, HF and Woolsey, CN (eds.), Biological and biochemical bases of behavior. Madison: University of Wisconsin Press, pp. 127150.Google Scholar
Rosina, A, Provini, L, Bentivoglio, M, Kuypers, HG. (1980) Ponto-neocerebellar axonal branching as revealed by double fluorescent retrograde labeling technique. Brain Res. 195:461466. doi: 10.1016/0006-8993(80)90080-3.Google Scholar
Rovó, Z, Ulbert, I, Acsády, L. (2012) Drivers of the primate thalamus. J Neurosci. 32:1789417908. doi: 10.1523/JNEUROSCI.2815-12.2012.Google Scholar
Roy, JP, Clercq, M, Steriade, M, Deschênes, M. (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. J Neurophysiol. 51:12201235. doi: 10.1152/jn.1984.51.6.1220.Google Scholar
Saalmann, YB, Kastner, S. (2015) The cognitive thalamus. Front Syst Neurosci. Mar 17;9:39. doi: 10.3389/fnsys.2015.00039.Google Scholar
Saalmann, YB, Pinsk, MA, Wang, L, Li, X, Kastner, S. (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science. 337:753756. doi: 10.1126/science.1223082.Google Scholar
Saleeba, C, Dempsey, B, Le, S, Goodchild, A, McMullan, S. (2019). A student’s guide to neural circuit tracing. Front Neurosci. 13. https://doi.org/10.3389/fnins.2019.00897art%20897.Google Scholar
Santorini, GD. (1775) Tabulae anatomicae. Parma: Regia Typographia.Google Scholar
Saper, CB, Loewy, AD. (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res. 197:291317. doi: 10.1016/0006-8993(80)91117-8.Google Scholar
Schaltenbrand, G, Wahren, W. (1977) Atlas for stereotaxy of the human brain. Stuttgart: Thieme.Google Scholar
Schiff, ND, Giacino, JT, Kalmar, K, Victor, JD, Baker, K, Gerber, M, Fritz, B, Eisenberg, B, Biondi, T, O’Connor, J, Kobylarz, EJ, Farris, S, Machado, A, McCagg, C, Plum, F, Fins, JJ, Rezai, AR. (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 448:600603. doi: 10.1038/nature06041.Google Scholar
Schmitt, LI, Wimmer, RD, Nakajima, M, Happ, M, Mofakham, S, Halassa, MM. (2017) Thalamic amplification of cortical connectivity sustains attentional control. Nature. 545:219223. doi: 10.1038/nature22073.Google Scholar
Sherman, SM. (2001a) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24:122126. doi: 10.1016/s0166-2236(00)01714-8.Google Scholar
Sherman, SM. (2001b) A wake-up call from the thalamus. Nat Neurosci. 4:344346. doi: 10.1038/85973.Google Scholar
Sherman, SM. (2004) Interneurons and triadic circuitry of the thalamus. Trends Neurosci. 27:670675. DOI: https://doi.org/10.1016/j.tins.2004.08.003.Google Scholar
Sherman, SM, Guillery, RW. (1996) Functional organization of thalamocortical relays. J Neurophysiol. 76:13671395. doi: 10.1152/jn.1996.76.3.1367.Google Scholar
Sherman, SM, Guillery, RW. (1998) On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.Proc Natl Acad Sci USA. 95:71217126. doi: 10.1073/pnas.95.12.7121.Google Scholar
Sherman, SM, Guillery, RW. (2005) Exploring the thalamus and its role in cortical function. Boston: MIT Press.Google Scholar
Sherman, SM, Guillery, RW. (2011) Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol. 106:10681077. doi: 10.1152/jn.00429.2011.Google Scholar
Sherman, SM Guillery, RW. (2012) Functional connections of cortical areas. A new view from the thalamus. Boston: MIT Press.Google Scholar
Shi, W, Xianyu, A, Han, Z, Tang, X, Li, Z, Zhong, H, Mao, T, Huang, K, Shi, SH. (2017) Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus. Nat Neurosci. 20:516528. doi: 10.1038/nn.4519.Google Scholar
Sirota, MG, Swadlow, HA, Beloozerova, IN. (2005) Three channels of corticothalamic communication during locomotion. J Neurosci. 25:59155925. doi: 10.1523/JNEUROSCI.0489-05.2005.Google Scholar
Spreafico, R, Barbaresi, P, Weinberg, RJ, Rustioni, A. (1987) SII-projecting neurons in the rat thalamus: a single- and double-retrograde-tracing study. Somatosens Res. 4:359475. doi: 10.3109/07367228709144614.Google Scholar
Stanford, LR, Friedlander, MJ, Sherman, SM. (1981) Morphology of physiologically identified W-cells in the C laminae of the cat’s lateral geniculate nucleus. J Neurosci. 1:578584. doi: 10.1523/JNEUROSCI.01-06-00578.1981.Google Scholar
Stanford, LR, Friedlander, MJ, Sherman, SM. (1983) Morphological and physiological properties of geniculate W-cells of the cat: a comparison with X- and Y-cells. J Neurophysiol. 50:582608. doi: 10.1152/jn.1983.50.3.582.Google Scholar
Steriade, M. (1999) Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci. 22:337345. doi: 10.1016/s0166-2236(99)01407-1.Google Scholar
Steriade, M. (2001a) The GABAergic reticular nucleus: a preferential target of corticothalamic projections. Proc Natl Acad Sci USA. 98:36253627. doi: 10.1073/pnas.071051998.Google Scholar
Steriade, M. (2001b) Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol. 86:139. doi: 10.1152/jn.2001.86.1.1.Google Scholar
Steriade, M, Parent, A, Paré, D, Smith, Y. (1987) Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei. Brain Res. 408:372376. doi: 10.1016/0006-8993(87)90408-2.Google Scholar
Strick, PL, Sterling, P. (1974) Synaptic termination of afferents from the ventrolateral nucleus of the thalamus in the cat motor cortex. A light and electron microscopy study. J Comp Neurol. 153:77106. doi: 10.1002/cne.901530107.Google Scholar
Sur, M, Sherman, SM. (1982) Retinogeniculate terminations in cats: morphological differences between X and Y cell axons. Science. 218:389. doi: 10.1126/science.7123239.Google Scholar
Swadlow, HA. (1994) Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs. J Neurophysiol. 71:437453. doi: 10.1152/jn.1994.71.2.437.Google Scholar
Swadlow, HA, Gusev, AG. (2001) The impact of “bursting” thalamic impulses at a neocortical synapse. Nat Neurosci. 4:402408. doi: 10.1038/86054.Google Scholar
Swanson, LW, Hartman, BK. (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol. 163:467505. doi: 10.1002/cne.901630406.Google Scholar
Szentagothai, J. (1963) The structure of the synapse in the lateral geniculate body. Acta Anat (Basel). 55:166185.Google Scholar
Theyel, BB, Llano, DA, Sherman, SM. (2010) The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci. 13:84–8. doi: 10.1038/nn.2449.Google Scholar
Tononi, G, Edelman, GM. (1998) Consciousness and complexity. Science. 282:18461851. doi: 10.1126/science.282.5395.1846.Google Scholar
Veenman, CL, Reiner, A, Honig, MG. (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods. 41:239254. https://doi.org/10.1016/0165-0270(92)90089-v.Google Scholar
Veinante, P, Lavallée, P, Deschênes, M. (2000) Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J Comp Neurol. 424:197204. doi: 10.1002/1096-9861(20000821)424:2<197::aid-cne1>3.0.co;2-6.Google Scholar
Verzeano, M, Lindsey, DB, Magoun, HW. (1953) Nature of recruiting response. J Neurophysiol. 16:183195. doi: 10.1152/jn.1953.16.2.183.Google Scholar
Viaene, AN, Petrof, I, Sherman, SM. (2011a) Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc Natl Acad Sci USA. 108:1815618161.doi: 10.1073/pnas.1114828108.Google Scholar
Viaene, AN, Petrof, I, Sherman, SM. (2011b) Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. J Neurophysiol. 105:279292. doi: 10.1152/jn.00747.2010.Google Scholar
Vogt, C. (1909) La myéloarchitecture du thalamus du cercophitèque. J Psychol Neurol. (Berl.). 12:285324.Google Scholar
Vogt, C, Vogt, O. (1941) Thalamusstudien I-III (Mit 140 Abbildungen). J Psychol Neurol. 50:31154.Google Scholar
Vulpian, A. (1866) Leçons sur la physiologie générale et comparée du système nerveux. Paris: Germer Baillière.Google Scholar
Walker, AE. (1938). The primate thalamus. Chicago: Univ. Chicago Press.Google Scholar
Walker, AE. (1966). Internal structure and afferent-efferent relations of the thalamus. In Purpura, DP and Yahr, MD (eds.), The thalamus. New York: Columbia University Press, pp. 111.Google Scholar
White, EL. (1978) Identified neurons in mouse Sml cortex which are postsynaptic to thalamocortical axon terminals: a combined Golgi-electron microscopic and degeneration study. J Comp Neurol. 181:627661. doi: 10.1002/cne.901810310.Google Scholar
Willis, T. (1664)/(1965). Anatomy of the brain and nerves: Volumes 1 and 2. Montreal: McGill University Press.Google Scholar
Xu, X, Holmes, TC, Luo, MH, Beier, KT, Horwitz, GD, Zhao, F, Zeng, W, Hui, M, Semler, BL, Sandri-Goldin, RM. (2020) Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron. 107:10291047. doi: 10.1016/j.neuron.2020.07.010.Google Scholar
Zhou, N, Masterson, SP, Damron, JK, Guido, W, Bickford, ME. (2018) The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J Neurosci. 38:347362. doi: 10.1523/JNEUROSCI.1279-17.2017.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×