Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T08:07:57.492Z Has data issue: false hasContentIssue false

Chapter 12 - Corticothalamic Pathways in the Somatosensory System

from Section 5: - Sensory Processing

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

The somatosensory thalamocortical system has proven a tractable model for dissecting how different neuronal populations sculpt bidirectional information exchange between the thalamus and the cortex. This chapter reviews corticothalamic (CT) pathways from layers 5 (L5) and 6 (L6) of the primary somatosensory (S1) cortex to first-order ventroposterior (VP) and higher-order posterior medial (POm) somatosensory thalamic nuclei. With a focus on insights gained from recent cell-type–specific approaches in rodent models, we contrast L5 and L6 CT pathways at the scales of network architecture, anatomical connectivity, and physiological characteristics. We further compare the distinct feedforward inhibitory circuits engaged by L6 and L5 CT pathways, which involve the thalamic reticular nucleus and extrathalamic inhibitory nuclei, respectively. Where data exist, we discuss short- and long-term synaptic dynamics of the specific CT circuits. We close with a discussion of the proposed functions of these distinct pathways in conveying “top-down” cortical signals for both the modulation of thalamic processing of sensory information and the transmission of information between cortical regions.

Type
Chapter
Information
The Thalamus , pp. 221 - 236
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahissar, E., & Assa, E. (2016). Perception as a closed-loop convergence process. eLife, 5. https://doi.org/10.7554/eLife.12830CrossRefGoogle ScholarPubMed
Ahissar, E., Golomb, D., Haidarliu, S., Sosnik, R., & Yu, C. (2008). Latency coding in POm: importance of parametric regimes [Review of Latency coding in POm: importance of parametric regimes]. Journal of Neurophysiology, 100(2), 11521154; author reply 1155–1157.Google Scholar
Ahissar, E., Sosnik, R., & Haidarliu, S. (2000). Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature, 406(6793), 302306. https://doi.org/10.1038/35018568Google Scholar
Akintunde, A., & Buxton, D. F. (1992). Origins and collateralization of corticospinal, corticopontine, corticorubral and corticostriatal tracts: a multiple retrograde fluorescent tracing study. Brain Research, 586(2), 208218.CrossRefGoogle ScholarPubMed
Alloway, K. D., Hoffer, Z. S., & Hoover, J. E. (2003). Quantitative comparisons of corticothalamic topography within the ventrobasal complex and the posterior nucleus of the rodent thalamus. Brain Research, 968(1), 5468.Google Scholar
Ansorge, J., Humanes-Valera, D., Pauzin, F. P., Schwarz, M. K., & Krieger, P. (2020). Cortical layer 6 control of sensory responses in higher-order thalamus. The Journal of Physiology, 598(18), 39734001.CrossRefGoogle ScholarPubMed
Arcelli, P., Frassoni, C., Regondi, M. C., de Biasi, S., & Spreafico, R. (1997). GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Research Bulletin, 42(1), 2737). https://doi.org/10.1016/s0361-9230(96)00107–4CrossRefGoogle ScholarPubMed
Audette, N. J., Bernhard, S. M., Ray, A., Stewart, L. T., & Barth, A. L. (2019). Rapid plasticity of higher-order thalamocortical inputs during sensory learning. Neuron, 103(2). 277–291.e4. https://doi.org/10.1016/j.neuron.2019.04.037Google Scholar
Audette, N. J., Urban-Ciecko, J., Matsushita, M., & Barth, A. L. (2018). POm thalamocortical input drives layer-specific microcircuits in somatosensory cortex. Cerebral Cortex, 28(4), 13121328.Google Scholar
Ayaz, A., Stäuble, A., Hamada, M., Wulf, M.-A., Saleem, A. B., & Helmchen, F. (2019). Layer-specific integration of locomotion and sensory information in mouse barrel cortex. Nature Communications, 10(1), 2585. https://doi.org/10.1038/s41467-019–10564-8Google Scholar
Bartho, P., Slezia, A., Varga, V., Bokor, H., Pinault, D., Buzsaki, G., & Acsady, L. (2007). Cortical control of zona incerta. Journal of Neuroscience, 27(7), 16701681. https://doi.org/10.1523/jneurosci.3768–06.2007Google Scholar
Bezdudnaya, T., Cano, M., Bereshpolova, Y., Stoelzel, C. R., Alonso, J.-M., & Swadlow, H. A. (2006). Thalamic burst mode and inattention in the awake LGNd. Neuron, 49(3), 421432.Google Scholar
Bickford, M. E. (2016). Thalamic circuit diversity: Modulation of the driver/modulator framework. Frontiers in Neural Circuits, 9. https://doi.org/10.3389/fncir.2015.00086Google Scholar
Bokor, H., Frère, S. G. A., Eyre, M. D., Slézia, A., Ulbert, I., Lüthi, A., & Acsády, L. (2005). Selective GABAergic control of higher-order thalamic relays. Neuron, 45(6), 929940.CrossRefGoogle ScholarPubMed
Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J., Rauffenbart, C., Abbas, A. I., Harris, A. Z., Gordon, J. A., & Kellendonk, C. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nature Neuroscience, 20(7), 987996. https://doi.org/10.1038/nn.4568Google Scholar
Bourassa, J., Pinault, D., & Deschênes, M. (1995). Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: A single-fibre study using biocytin as an anterograde tracer. European Journal of Neuroscience, 7(1), 1930.Google Scholar
Bruno, R. M., De Kock, C. P. J., Kuner, T., & Sakmann, B. (2010). Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cerebral Cortex, 20(10), 22652276.Google Scholar
Butts, D. A., Desbordes, G., Weng, C., Jin, J., Alonso, J. M., & Stanley, G. B. (2010). The episodic nature of spike trains in the early visual pathway. Journal of Neurophysiology, 104(6), 33713387.Google Scholar
Butts, D. A., Weng, C., Jin, J., Yeh, C. I., Lesica, N. A., Alonso, J. M., & Stanley, G. B. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature, 449(7158), 9295.Google Scholar
Cadusseau, J., & Roger, M. (1991). Cortical and subcortical connections of the pars compacta of the anterior pretectal nucleus in the rat. Neuroscience Research, 12(1), 83100.Google Scholar
Cajal, S. R. y. (1906). Santiago Ramón y Cajal—Nobel Lecture. https://www.nobelprize.org/uploads/2018/06/cajal-lecture.pdfGoogle Scholar
Castro-Alamancos, M. A. (2002a). Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. The Journal of Physiology, 539(Pt 2), 567578.Google Scholar
Castro-Alamancos, M. A. (2002b). Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. Journal of Neurophysiology, 87(2), 946953. https://doi.org/10.1152/jn.00426.2001CrossRefGoogle ScholarPubMed
Castro-Alamancos, M. A., & Calcagnotto, M. E. (1999). Presynaptic long-term potentiation in corticothalamic synapses. Journal of Neuroscience, 19(20), 90909097.Google Scholar
Clascá, F., Porrero, C., Galazo, M. J., Rubio-Garrido, P., & Evangelio, M. (2016). Anatomy and development of multispecific thalamocortical axons: Implications for cortical dynamics and evolution. In Rockland, K. S. (Ed.), Axons and Brain Architecture (pp. 6992). Academic Press.CrossRefGoogle Scholar
Coenen, A. M., & Vendrik, A. J. (1972). Determination of the transfer ratio of cat’s geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Experimental Brain Research, 14(3), 227242.CrossRefGoogle ScholarPubMed
Colello, R., Baker, G., Reese, B., Mitrofanis, J., Chan, H., & Joachim, L. (2018). Cortical layer with no known function. European Journal of Neuroscience, 49(7), 957963. https://doi.org/10.1111/ejn.13978Google Scholar
Cox, C. L., & Sherman, S. M. (1999). Glutamate inhibits thalamic reticular neurons. Journal of Neuroscience, 19(15), 66946699.Google Scholar
Crandall, S. R., Cruikshank, S. J., & Connors, B. W. (2015). A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron, 86(3), 768782.Google Scholar
Crandall, S. R., Patrick, S. L., Cruikshank, S. J., & Connors, B. W. (2017). Infrabarrels are layer 6 circuit modules in the barrel cortex that link long-range inputs and outputs. Cell Reports, 21(11), 30653078.Google Scholar
de Kock, C. P. J., Bruno, R. M., Spors, H., & Sakmann, B. (2007). Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. Journal of Physiology, 581(Pt 1), 139154.Google Scholar
de Kock, C. P. J., Pie, J., Pieneman, A. W., Mease, R. A., Bast, A., Guest, J. M., Oberlaender, M., Mansvelder, H. D., & Sakmann, B. (2021). High-frequency burst spiking in layer 5 thick-tufted pyramids of rat primary somatosensory cortex encodes exploratory touch. Communications Biology, 4(1), 114.Google Scholar
de Kock, C. P. J., & Sakmann, B. (2009). Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 1644616450.Google Scholar
Deleuze, C., David, F., Béhuret, S., Sadoc, G., Shin, H.-S., Uebele, V. N., Renger, J. J., Lambert, R. C., Leresche, N., & Bal, T. (2012). T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. Journal of Neuroscience, 32(35), 1222812236.Google Scholar
Deschênes, M., Veinante, P., & Zhang, Z.-W. (1998). The organization of corticothalamic projections: Reciprocity versus parity. Brain Research Reviews, 28(3), 286308. https://doi.org/10.1016/s0165-0173(98)00017–4Google Scholar
Diamond, M. E., Armstrong-James, M., Budway, M. J., & Ebner, F. F. (1992). Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex. Journal of Comparative Neurology, 319(1), 6684. https://doi.org/10.1002/cne.903190108Google Scholar
El-Boustani, S., Sermet, B. S., Foustoukos, G., Oram, T. B., Yizhar, O., & Petersen, C. C. H. (2020). Anatomically and functionally distinct thalamocortical inputs to primary and secondary mouse whisker somatosensory cortices. Nature Communications, 11(1), 3342.Google Scholar
Endo, K., Araki, T., & Yagi, N. (1973). The distribution and pattern of axon branching of pyramidal tract cells. Brain Research, 57(2), 484491.Google Scholar
Fernandez, L. M. J., Pellegrini, C., Vantomme, G., Béard, E., Lüthi, A., & Astori, S. (2017). Cortical afferents onto the nucleus Reticularis thalami promote plasticity of low-threshold excitability through GluN2C-NMDARs. Scientific Reports, 7(1), 12271.Google Scholar
Foster, G. A., Sizer, A. R., Rees, H., & Roberts, M. H. (1989). Afferent projections to the rostral anterior pretectal nucleus of the rat: a possible role in the processing of noxious stimuli. Neuroscience, 29(3), 685694.CrossRefGoogle Scholar
Frandolig, J. E., Matney, C. J., Lee, K., Kim, J., Chevée, M., Kim, S.-J., Bickert, A. A., & Brown, S. P. (2019). The synaptic organization of layer 6 circuits reveals inhibition as a major output of a neocortical sublamina. Cell Reports, 28(12), 3131–3143.e5.Google Scholar
Frangeul, L., Pouchelon, G., Telley, L., Lefort, S., Luscher, C., & Jabaudon, D. (2016). A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature, 538(7623), 9698.CrossRefGoogle ScholarPubMed
Gambino, F., Pagès, S., Kehayas, V., Baptista, D., Tatti, R., Carleton, A., & Holtmaat, A. (2014). Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature, 515(7525), 116119. https://doi.org/10.1038/nature13664Google Scholar
Giber, K., Slézia, A., Bokor, H., Bodor, A. L., Ludányi, A., Katona, I., & Acsády, L. (2008). Heterogeneous output pathways link the anterior pretectal nucleus with the zona incerta and the thalamus in rat. Journal of Comparative Neurology, 506(1), 122140.Google Scholar
Golshani, P., Liu, X. B., & Jones, E. G. (2001). Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 41724177.Google Scholar
Gordon, G., Fonio, E., & Ahissar, E. (2014). Learning and control of exploration primitives. Journal of Computational Neuroscience, 37(2), 259280. https://doi.org/10.1007/s10827-014–0500-1CrossRefGoogle ScholarPubMed
Groh, A., Bokor, H., Mease, R. A., Plattner, V. M., Hangya, B., Stroh, A., Deschênes, M., & Acsády, L. (2014). Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cerebral Cortex, 24(12), 31673179.Google Scholar
Groh, A., de Kock, C. P. J., Wimmer, V. C., Sakmann, B., & Kuner, T. (2008). Driver or coincidence detector: Modal switch of a corticothalamic giant synapse controlled by spontaneous activity and short-term depression. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(39), 96529663.Google Scholar
Groh, A., Meyer, H. S., Schmidt, E. F., Heintz, N., Sakmann, B., & Krieger, P. (2010). Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cerebral Cortex, 20(4), 826836.CrossRefGoogle ScholarPubMed
Guido, W., Lu, S. M., & Sherman, S. M. (1992). Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. Journal of Neurophysiology, 68(6), 21992211.Google Scholar
Guillery, R. W. (1995). Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. Journal of Anatomy, 187 (Pt 3), 583592.Google ScholarPubMed
Guo, C., Peng, J., Zhang, Y., Li, A., Li, Y., Yuan, J., Xu, X., Ren, M., Gong, H., & Chen, S. (2017). Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field. Scientific Reports, 7(1), 2846.Google Scholar
Guo, K., Yamawaki, N., Barrett, J. M., Tapies, M., & Shepherd, G. M. G. (2020). Cortico-thalamo-cortical circuits of mouse forelimb s1 are organized primarily as recurrent loops. Journal of Neuroscience, 40(14), 28492858.Google Scholar
Guo, Z. V., Inagaki, H. K., Daie, K., Druckmann, S., Gerfen, C. R., & Svoboda, K. (2017). Maintenance of persistent activity in a frontal thalamocortical loop. Nature, 545(7653), 181186. https://doi.org/10.1038/nature22324Google Scholar
Halassa, M. M., & Acsády, L. (2016). Thalamic inhibition: Diverse sources, diverse scales. Trends in Neurosciences, 39(10), 680693.Google Scholar
Halassa, M. M., & Sherman, S. M. (2019). Thalamocortical circuit motifs: A general framework. Neuron, 103(5), 762770.Google Scholar
Hanbery, J., & Jasper, H. (1953). Independence of diffuse thalamo-cortical projection system shown by specific nuclear destructions. Journal of Neurophysiology, 16(3), 252271.CrossRefGoogle ScholarPubMed
Harris, J. A., Mihalas, S., Hirokawa, K. E., Whitesell, J. D., Choi, H., Bernard, A., Bohn, P., Caldejon, S., Casal, L., Cho, A., Feiner, A., Feng, D., Gaudreault, N., Gerfen, C. R., Graddis, N., Groblewski, P. A., Henry, A. M., Ho, A., Howard, R., … Zeng, H. (2019). Hierarchical organization of cortical and thalamic connectivity. Nature, 575(7781), 195202.CrossRefGoogle ScholarPubMed
Harris, K. D., & Shepherd, G. M. G. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18(2), 170181.Google Scholar
Harris, R. M., & Hendrickson, A. E. (1987). Local circuit neurons in the rat ventrobasal thalamus—a GABA immunocytochemical study. Neuroscience, 21(1), 229236.Google Scholar
Hasse, J. M., & Briggs, F. (2017). Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret. Proceedings of the National Academy of Sciences of the United States of America, 114(30), E6222E6230.Google Scholar
Hayashi, S., Hoerder-Suabedissen, A., Kiyokage, E., Maclachlan, C., Toida, K., Knott, G., & Molnár, Z. (2021). Maturation of complex synaptic connections of layer 5 cortical axons in the posterior thalamic nucleus requires SNAP25. Cerebral Cortex, 31(5), 26252638.Google Scholar
Hirai, D., Nakamura, K. C., Shibata, K.-I., Tanaka, T., Hioki, H., Kaneko, T., & Furuta, T. (2018). Shaping somatosensory responses in awake rats: Cortical modulation of thalamic neurons. Brain Structure & Function, 223(2), 851872.Google Scholar
Hoerder-Suabedissen, A., Hayashi, S., Upton, L., Nolan, Z., Casas-Torremocha, D., Grant, E., Viswanathan, S., Kanold, P. O., Clascá, F., Kim, Y., & Molnár, Z. (2018). Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cerebral Cortex, 28(5), 1882–1897.Google Scholar
Hoogland, P. V., Welker, E., & Van der Loos, H. (1987). Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP. Experimental Brain Research, 68(1), 7387.Google Scholar
Hoogland, P. V., Wouterlood, F. G., Welker, E., & Van der Loos, H. (1991). Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Experimental Brain Research, 87(1), 159172.Google Scholar
Hsu, C.-L., Yang, H.-W., Yen, C.-T., & Min, M.-Y. (2010). Comparison of synaptic transmission and plasticity between sensory and cortical synapses on relay neurons in the ventrobasal nucleus of the rat thalamus. Journal of Physiology, 588(Pt 22), 43474363.Google Scholar
Jones, E. G. (1998). Viewpoint: The core and matrix of thalamic organization. Neuroscience, 85(2), 331345.Google Scholar
Jurgens, C. W. D., Bell, K. A., McQuiston, A. R., & Guido, W. (2012). Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus. PloS One, 7(9), e45717.Google Scholar
Killackey, H. P., & Sherman, S. M. (2003). Corticothalamic projections from the rat primary somatosensory cortex. Journal of Neuroscience, 23(19), 73817384.CrossRefGoogle ScholarPubMed
Kirchgessner, M. A., Franklin, A. D., & Callaway, E. M. (2020). Context-dependent and dynamic functional influence of corticothalamic pathways to first- and higher-order visual thalamus. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 1306613077.Google Scholar
Kita, T., & Kita, H. (2012). The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. Journal of Neuroscience, 32(17), 59905999.Google Scholar
Krieger, P., & Groh, A. (2015). Sensorimotor Integration in the Whisker System. Springer.Google Scholar
Lam, Y.-W., & Sherman, S. M. (2010). Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cerebral Cortex, 20(1), 1324.CrossRefGoogle Scholar
Larkum, M. E., Julius Zhu, J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338341. https://doi.org/10.1038/18686Google Scholar
La Terra, D., Bjerre, A.-S., Rosier, M., Masuda, R., Ryan, T. J., and Palmer, L. M. (2022). The role of higher-order thalamus during learning and correct performance in goal-directed behavior. Elife 11, e77177.Google Scholar
Lavallée, P., Urbain, N., Dufresne, C., Bokor, H., Acsády, L., & Deschênes, M. (2005). Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. Journal of Neuroscience, 25(33), 74897498.Google Scholar
Lesica, N. A., Weng, C., Jin, J., Yeh, C. I., Alonso, J. M., & Stanley, G. B. (2006). Dynamic encoding of natural luminance sequences by LGN bursts. PLoS Biology, 4(7), e209.Google Scholar
Li, J., Wang, S., & Bickford, M. E. (2003). Comparison of the ultrastructure of cortical and retinal terminals in the rat dorsal lateral geniculate and lateral posterior nuclei. Journal of Comparative Neurology, 460(3), 394409.Google Scholar
Li, Y., Lopez-Huerta, V. G., Adiconis, X., Levandowski, K., Choi, S., Simmons, S. K., Arias-Garcia, M. A., Guo, B., Yao, A. Y., Blosser, T. R., Wimmer, R. D., Aida, T., Atamian, A., Naik, T., Sun, X., Bi, D., Malhotra, D., Hession, C. C., Shema, R., … Feng, G. (2020). Distinct subnetworks of the thalamic reticular nucleus. Nature, 583(7818), 819824.CrossRefGoogle ScholarPubMed
Livingstone, M. S., & Hubel, D. H. (1981). Effects of sleep and arousal on the processing of visual information in the cat. Nature, 291(5816), 554561.Google Scholar
Lu, S.-M., Guido, W., & Sherman, S. M. (1993). The brain-stem parabrachial region controls mode of response to visual stimulation of neurons in the cat’s lateral geniculate nucleus. Visual Neuroscience, 10(4), 631642. https://doi.org/10.1017/s0952523800005332CrossRefGoogle ScholarPubMed
Martinez-Garcia, R. I., Voelcker, B., Zaltsman, J. B., Patrick, S. L., Stevens, T. R., Connors, B. W., & Cruikshank, S. J. (2020). Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature, 583(7818), 813818.Google Scholar
Masri, R., Quiton, R. L., Lucas, J. M., Murray, P. D., Thompson, S. M., & Keller, A. (2009). Zona incerta: A role in central pain. Journal of Neurophysiology, 102(1), 181191.Google Scholar
Mease, R. A., & Gonzalez, A. J. (2021). Corticothalamic pathways from layer 5: Emerging roles in computation and pathology. Frontiers in Neural Circuits, 15, 88.Google Scholar
Mease, R. A., Krieger, P., & Groh, A. (2014). Cortical control of adaptation and sensory relay mode in the thalamus. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 67986803.Google Scholar
Mease, R. A., Kuner, T., Fairhall, A. L., & Groh, A. (2017). Multiplexed spike coding and adaptation in the thalamus. Cell Reports, 19(6), 11301140.Google Scholar
Mease, R. A., Metz, M., & Groh, A. (2016). Cortical sensory responses are enhanced by the higher-order thalamus. Cell Reports, 14(2), 208215. https://doi.org/10.1016/j.celrep.2015.12.026Google Scholar
Mease, R. A., Sumser, A., Sakmann, B., & Groh, A. (2016a). Cortical dependence of whisker responses in posterior medial thalamus in vivo. Cerebral Cortex, 26(8), 35343543. https://doi.org/10.1093/cercor/bhw144Google Scholar
Mease, R. A., Sumser, A., Sakmann, B., & Groh, A. (2016b). Corticothalamic spike transfer via the L5B-POm pathway in vivo. Cerebral Cortex, 26(8), 34613475.Google Scholar
Meyer, H. S., Wimmer, V. C., Oberlaender, M., de Kock, C. P. J., Sakmann, B., & Helmstaedter, M. (2010). Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cerebral Cortex, 20(10), 22772286.Google Scholar
Mo, C., & Sherman, S. M. (2019). A sensorimotor pathway via higher-order thalamus. Journal of Neuroscience, 39(4), 692704.Google Scholar
Moore, J. D., Lindsay, N. M., Deschênes, M., & Kleinfeld, D. (2015). Vibrissa self-motion and touch are reliably encoded along the same somatosensory pathway from brainstem through thalamus. PLOS Biology, 13(9), e1002253. https://doi.org/10.1371/journal.pbio.1002253Google Scholar
Narayanan, R. T., Egger, R., Johnson, A. S., Mansvelder, H. D., Sakmann, B., de Kock, C. P. J., & Oberlaender, M. (2015). Beyond columnar organization: cell type- and target layer-specific principles of horizontal axon projection patterns in rat vibrissal cortex. Cerebral Cortex, 25(11), 44504468.Google Scholar
Naud, R., & Sprekeler, H. (2018). Sparse bursts optimize information transmission in a multiplexed neural code. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6329E6338. https://doi.org/10.1073/pnas.1720995115Google Scholar
Ohno, S., Kuramoto, E., Furuta, T., Hioki, H., Tanaka, Y. R., Fujiyama, F., Sonomura, T., Uemura, M., Sugiyama, K., & Kaneko, T. (2012). A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: A single neuron tracing study with viral vectors. Cerebral Cortex, 22(12), 28402857.Google Scholar
Pauzin, F. P., Schwarz, N., & Krieger, P. (2019). Activation of corticothalamic layer 6 cells decreases angular tuning in mouse barrel cortex. Frontiers in Neural Circuits, 13, 67.CrossRefGoogle ScholarPubMed
Phillips, J. W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., Wang, L., Shields, B. C., Korff, W., Chandrashekar, J., Lemire, A. L., Mensh, B., Dudman, J. T., Nelson, S. B., & Hantman, A. W. (2019). A repeated molecular architecture across thalamic pathways. Nature Neuroscience, 22(11), 19251935. https://doi.org/10.1038/s41593-019–0483-3Google Scholar
Pigeat, R., Chausson, P., & Dreyfus, F. M. (2015). Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: Involvement of T-type Ca2+ channels and metabotropic glutamate. Journal of Neuroscience, 35(1), 6473. https://www.jneurosci.org/content/35/1/64.shortGoogle Scholar
Pinault, D. (2004). The thalamic reticular nucleus: structure, function and concept. Brain Research. Brain Research Reviews, 46(1), 131.Google Scholar
Prasad, J. A., Carroll, B. J., & Sherman, S. M. (2020). Layer 5 corticofugal projections from diverse cortical areas: Variations on a pattern of thalamic and extrathalamic targets. Journal of Neuroscience, 40(30), 57855796.Google Scholar
Reichova, I. (2004). Somatosensory corticothalamic projections: Distinguishing Drivers from modulators. Journal of Neurophysiology, 92(4), 21852197.Google Scholar
Rockland, K. S. (2019). Corticothalamic axon morphologies and network architecture. European Journal of Neuroscience, 49(8), 969977.CrossRefGoogle ScholarPubMed
Rojas-Piloni, G., Guest, J. M., Egger, R., Johnson, A. S., Sakmann, B., & Oberlaender, M. (2017). Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons. Nature Communications, 8(1), 870.Google Scholar
Rouiller, E. M., & Welker, E. (2000). A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Research Bulletin, 53(6), 727741.Google Scholar
Sampathkumar, V., Miller-Hansen, A., Sherman, S. M., & Kasthuri, N. (2021). Integration of signals from different cortical areas in higher order thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 118(30), e2104137118. https://doi.org/10.1073/pnas.2104137118Google Scholar
Schmitt, L. I., Ian Schmitt, L., Wimmer, R. D., Nakajima, M., Happ, M., Mofakham, S., & Halassa, M. M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545(7653), 219223. https://doi.org/10.1038/nature22073CrossRefGoogle ScholarPubMed
Seol, M., & Kuner, T. (2015). Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse. European Journal of Neuroscience, 42(12), 30333044.Google Scholar
Shepherd, G. M. G. (2013). Corticostriatal connectivity and its role in disease. Nature Reviews Neuroscience, 14(4), 278291.Google Scholar
Shepherd, G. M. G., & Yamawaki, N. (2021). Untangling the cortico-thalamo-cortical loop: Cellular pieces of a knotty circuit puzzle. Nature Reviews Neuroscience, 22(7), 389–406. https://doi.org/10.1038/s41583-021–00459-3CrossRefGoogle ScholarPubMed
Sherman, S. M. (2001a). Thalamic relay functions. Progress in Brain Research, 134, 5169.Google Scholar
Sherman, S. M. (2001b). Tonic and burst firing: Dual modes of thalamocortical relay. Trends in Neurosciences, 24(2), 122126.Google Scholar
Sherman, S. M. (2007). The thalamus is more than just a relay. Current Opinion in Neurobiology, 17(4), 417422.Google Scholar
Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience, 19(4), 533541.CrossRefGoogle Scholar
Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.Proceedings of the National Academy of Sciences of the United States of America, 95(12), 71217126.CrossRefGoogle ScholarPubMed
Sherman, S. M., & Guillery, R. W. (2006). Exploring the Thalamus and Its Role in Cortical Function (2nd ed.). MIT Press.Google Scholar
Smith, Y., Wichmann, T., & DeLong, M. R. (2014). Corticostriatal and mesocortical dopamine systems: do species differences matter? [Review of Corticostriatal and mesocortical dopamine systems: Do species differences matter?]. Nature Reviews. Neuroscience, 15(1), 63.Google Scholar
Spacek, M. A., Born, G., Crombie, D., Bauer, Y., & Liu, X. (2021). Robust effects of corticothalamic feedback during naturalistic visual stimulation. BioRxiv. https://www.biorxiv.org/content/10.1101/776237v5.abstractGoogle Scholar
Stroh, A., Adelsberger, H., Groh, A., Rühlmann, C., Fischer, S., Schierloh, A., Deisseroth, K., & Konnerth, A. (2013). Making waves: Initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron, 77(6), 11361150.Google Scholar
Sumser, A., Mease, R. A., Sakmann, B., & Groh, A. (2017). Organization and somatotopy of corticothalamic projections from L5B in mouse barrel cortex. Proceedings of the National Academy of Sciences, 114(33), 88538858. https://doi.org/10.1073/pnas.1704302114Google Scholar
Suzuki, M., & Larkum, M. E. (2020). General anesthesia decouples cortical pyramidal neurons. Cell, 180(4), 666–676.e13. https://doi.org/10.1016/j.cell.2020.01.024Google Scholar
Swadlow, H. A., & Gusev, A. G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience, 4(4), 402408.Google Scholar
Takahashi, N., Oertner, T. G., Hegemann, P., & Larkum, M. E. (2016). Active cortical dendrites modulate perception. Science, 354(6319), 15871590. https://doi.org/10.1126/science.aah6066Google Scholar
Temereanca, S., & Simons, D. J. (2004). Functional topography of corticothalamic feedback enhances thalamic spatial response tuning in the somatosensory whisker/barrel system. Neuron, 41(4), 639651.Google Scholar
Theyel, B. B., Llano, D. A., & Sherman, S. M. (2010). The corticothalamocortical circuit drives higher-order cortex in the mouse. Nature Neuroscience, 13(1), 8488.Google Scholar
Thomson, A. M. (2010). Neocortical layer 6, a review. Frontiers in Neuroanatomy, 4, 13.Google Scholar
Trageser, J. C. (2004). Reducing the uncertainty: Gating of peripheral inputs by zona incerta. Journal of Neuroscience, 24(40), 89118915. https://doi.org/10.1523/jneurosci.3218–04.2004Google Scholar
Tscherter, A., David, F., Ivanova, T., Deleuze, C., Renger, J. J., Uebele, V. N., Shin, H.-S., Bal, T., Leresche, N., & Lambert, R. C. (2011). Minimal alterations in T-type calcium channel gating markedly modify physiological firing dynamics. Journal of Physiology, 589(Pt 7), 17071724.Google Scholar
Urbain, N., & Deschênes, M. (2007). Motor cortex gates vibrissal responses in a thalamocortical projection pathway. Neuron, 56(4), 714725. https://doi.org/10.1016/j.neuron.2007.10.023Google Scholar
Urbain, N., Salin, P. A., Libourel, P.-A., Comte, J.-C., Gentet, L. J., & Petersen, C. C. H. (2015). Whisking-related changes in neuronal firing and membrane potential dynamics in the somatosensory thalamus of awake mice. Cell Reports, 13(4), 647656. https://doi.org/10.1016/j.celrep.2015.09.029Google Scholar
Veinante, P., Lavallée, P., & Deschênes, M. (2000). Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. Journal of Comparative Neurology, 424(2), 197204.Google Scholar
Wark, B., Lundstrom, B. N., & Fairhall, A. (2007). Sensory adaptation. Current Opinion in Neurobiology, 17(4), 423429.Google Scholar
Williams, L. E., & Holtmaat, A. (2019). Higher-order thalamocortical inputs gate synaptic long-term potentiation via disinhibition. Neuron, 101(1), 91–102.e4.Google Scholar
Wolff, M., Morceau, S., Folkard, R., Martin-Cortecero, J., & Groh, A. (2020). A thalamic bridge from sensory perception to cognition. Neuroscience and Biobehavioral Reviews, 120, 222235.Google Scholar
Zhang, W., & Bruno, R. M. (2019). High-order thalamic inputs to primary somatosensory cortex are stronger and longer lasting than cortical inputs. eLife, 8. https://doi.org/10.7554/elife.44158Google Scholar
Zhang, Z. W., & Deschênes, M. (1997). Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: A single-cell labeling study. Journal of Neuroscience, 17(16), 63656379.Google Scholar
Zolnik, T. A., Ledderose, J., Toumazou, M., Trimbuch, T., Oram, T., Rosenmund, C., Eickholt, B. J., Sachdev, R. N. S., & Larkum, M. E. (2020). Layer 6b is driven by intracortical long-range projection neurons. Cell Reports, 30(10), 3492–3505.e5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×