from Part two - Coding theory
Published online by Cambridge University Press: 05 June 2012
Introduction
At the beginning of Chapter 7, we said that by restricting our attention to linear codes (rather than arbitrary, unstructured codes), we could hope to find some good codes which are reasonably easy to implement. And it is true that (via syndrome decoding, for example) a “small” linear code, say with dimension or redundancy at most 20, can be implemented in hardware without much difficulty. However, in order to obtain the performance promised by Shannon's theorems, it is necessary to use larger codes, and in general, a large code, even if it is linear, will be difficult to implement. For this reason, almost all block codes used in practice are in fact cyclic codes; cyclic codes form a very small and highly structured subset of the set of linear codes. In this chapter, we will give a general introduction to cyclic codes, discussing both the underlying mathematical theory (Section 8.1) and the basic hardware circuits used to implement cyclic codes (Section 8.2). In Section 8.3 we will show that Hamming codes can be implemented as cyclic codes, and in Sections 8.4 and 8.5 we will see how cyclic codes are used to combat burst errors. Our story will be continued in Chapter 9, where we will study the most important family of cyclic codes yet discovered: the BCH/Reed–Solomon family.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.