Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T06:47:05.422Z Has data issue: false hasContentIssue false

12 - Survey of advanced topics for Part two

from Part two - Coding theory

Published online by Cambridge University Press:  10 November 2009

Robert McEliece
Affiliation:
California Institute of Technology
Get access

Summary

Introduction

This chapter serves the same function for Part two as Chapter 6 served for Part one, that is, it summarizes some of the most important results in coding theory which have not been treated in Chapters 7–11. In Sections 12.2, 12.3, and 12.4 we treat channel coding (block codes, convolutional codes, and a comparison of the two). Finally in Section 12.5 we discuss source coding.

Block codes

The theory of block codes is older and richer than the theory of convolutional codes, and so this section is much longer than Section 12.3. (This imbalance does not apply to practical applications, however; see Section 12.4.) In order to give this section some semblance of organization, we shall classify the results to be cited according to Berlekamp's [15] list of the three major problems of coding theory:

  1. How good are the best codes?

  2. How can we design good codes?

  3. How can we decode such codes?

How good are the best codes? One of the earliest problems which arose in coding theory was that of finding perfect codes. If we view a code of length n over the finite field Fq as a subset {x1; x2, …, xM} of the vector space Vn(Fq), the code is said to be perfect (or close packed) if for some integer e, the Hamming spheres of radius e around the M codewords completely fill Vn(Fq) without overlap.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×