Book contents
- Frontmatter
- Contents
- Foreword
- Preface
- Introduction
- 1 Embedding graphs on surfaces
- 2 Maximum genus
- 3 Distribution of embeddings
- 4 Algorithms and obstructions for embeddings
- 5 Graph minors: generalizing Kuratowski's theorem
- 6 Colouring graphs on surfaces
- 7 Crossing numbers
- 8 Representing graphs and maps
- 9 Enumerating coverings
- 10 Symmetric maps
- 11 The genus of a group
- 12 Embeddings and geometries
- 13 Embeddings and designs
- 14 Infinite graphs and planar maps
- 15 Open problems
- Notes on contributors
- Index
11 - The genus of a group
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Foreword
- Preface
- Introduction
- 1 Embedding graphs on surfaces
- 2 Maximum genus
- 3 Distribution of embeddings
- 4 Algorithms and obstructions for embeddings
- 5 Graph minors: generalizing Kuratowski's theorem
- 6 Colouring graphs on surfaces
- 7 Crossing numbers
- 8 Representing graphs and maps
- 9 Enumerating coverings
- 10 Symmetric maps
- 11 The genus of a group
- 12 Embeddings and geometries
- 13 Embeddings and designs
- 14 Infinite graphs and planar maps
- 15 Open problems
- Notes on contributors
- Index
Summary
This chapter surveys the genus of a finite group. Various symmetric embeddings of Cayley graphs are discussed, together with their associated genus parameters and their relationship to group actions on surfaces. Computations for low genus and certain families of groups are given. Particular attention is paid to general results relating the various genus parameters to each other.
Introduction
The (orientable) genus γ (A) of a finite group A is the smallest integer h such that some Cayley graph for A can be embedded in the orientable surface Sh. (Recall that the Cayley graph C(A, X) for a group A with generating set X has vertex-set A and edges between a and ax, for all a ∈ A and x ∈ X.) The term was first introduced by White [50], but similar ideas appear as far back as the late 19th century. Burnside [6] has two chapters on the ‘graphical representation of a group’ that include the determination of all groups of ‘genus’ 0 and 1 (really the strong symmetric genus, in the language of the next section). The early history is mostly in the context of finite groups of conformal automorphisms of Riemann surfaces, and this context continues to play an important role. On the other hand, Burnside also viewed an embedding of a Cayley graph, or more explicitly the faces of such an embedding, as a way of understanding the relations in a group presentation, in the spirit of Dehn [14] a few years later.
- Type
- Chapter
- Information
- Topics in Topological Graph Theory , pp. 225 - 244Publisher: Cambridge University PressPrint publication year: 2009