It is the purpose of this work to present a thorough investigation of the various systems of Symbolic Reasoning allied to ordinary Algebra. The chief examples of such systems are Hamilton's Quaternions, Grassmann's Calculus of Extension, and Boole's Symbolic Logic. Such algebras have an intrinsic value for separate detailed study; also they are worthy of a comparative study, for the sake of the light thereby thrown on the general theory of symbolic reasoning, and on algebraic symbolism in particular.
The comparative study necessarily presupposes some previous separate study, comparison being impossible without knowledge. Accordingly after the general principles of the whole subject have been discussed in Book I. of this volume, the remaining books of the volume are devoted to the separate study of the Algebra of Symbolic Logic, and of Grassmann's Calculus of Extension, and of the ideas involved in them. The idea of a generalized conception of space has been made prominent, in the belief that the properties and operations involved in it can be made to form a uniform method of interpretation of the various algebras.
Thus it is hoped in this work to exhibit the algebras both as systems of symbolism, and also as engines for the investigation of the possibilities of thought and reasoning connected with the abstract general idea of space. A natural mode of comparison between the algebras is thus at once provided by the unity of the subject-matters of their interpretation.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.