Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-12T20:22:53.417Z Has data issue: false hasContentIssue false

72 - Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world

from Part VII - Cloud forest conservation, restoration, and management issues

Published online by Cambridge University Press:  03 May 2011

L.A. Bruijnzeel
Affiliation:
VU University, Netherlands
M. Kappelle
Affiliation:
University of Tennessee, Costa Rica
M. Mulligan
Affiliation:
King's College London, UK
F.N. Scatena
Affiliation:
University of Pennsylvania, USA
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

INTRODUCTION

As indicated in the introductory chapter to this book, knowledge of tropical montane cloud forest (TMCF) occurrence, biodiversity, hydrology, and ecological functioning has increased considerably since the ground-breaking publications of Zadroga (1981), Stadtmüller (1987), and the proceedings of the first international symposium on TMCF held in 1993 in Puerto Rico (Hamilton et al., 1995a). Cloud forests continue to be threatened in several ways, notably by their conversion to pasture and various forms of agriculture, as well as by climatic drying – the numerous hydrological and ecological consequences of which are only poorly understood as yet (Bubb et al., 2004; Mulligan and Burke, 2005a; Pounds et al., 2006; Zotz and Bader, 2009).

The collection of chapters in the present volume further advances our knowledge in the three broad and interrelated areas that were defined in the introduction, viz. (i) cloud forest biogeography and biodiversity, (ii) biophysical and ecological processes, and (iii) management and conservation strategies.

As the recognition of the value of TMCFs as treasure houses of biodiversity and as providers of high-quality water continues to increase, an array of initiatives aimed at their conservation has emerged in recent years, often within a Payment for Ecosystem Services (PES) context (Asquith and Wunder, 2008; Muñoz-Piña et al., 2008; Porras et al., 2008; Garriguata and Balvanera, 2009; Tognetti et al., this volume). Such PES schemes, but also land and forest managers and policy-makers in general, need to determine (amongst others) which forests under their jurisdiction are the most diverse and valuable biologically, which ones provide the best water supplies, which forests are the most vulnerable to climate change or most threatened by encroachment, and which degraded TMCFs have the best chances for rehabilitation.

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 691 - 740
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiba, S., and Kitayama, K. (1999). Structure, composition and species diversity in an altitude–substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology 140: 139–157.CrossRefGoogle Scholar
Aiba, S., Takyu, M., and Kitayama, K. (2005). Dynamics, productivity and species richness of tropical rainforests along elevational and edaphic gradients on Mount Kinabalu, Borneo. Ecological Research 20: 279–286.CrossRefGoogle Scholar
Aide, T. M., and Grau, H. R. (2004). Globalization, migration, and Latin American ecosystems. Science 305: 1915–1916.CrossRefGoogle ScholarPubMed
Aldrich, M., Billington, C., Edwards, M., and Laidlaw, R. (1997a). Tropical Montane Cloud Forests: An Urgent Priority for Conservation, WCMC Biodiversity Bulletin No. 2. Cambridge, UK: UNEP–World Conservation Monitoring Centre.Google Scholar
Aldrich, M., Billington, C., Edwards, M., and Laidlaw, R. (1997b). A Global Directory of Tropical Montane Cloud Forests. Cambridge, UK: UNEP–World Conservation Monitoring Centre.Google Scholar
Aldrich, M., Bubb, P., Hostettler, S., and Wiel, H. (2000). Tropical Montane Cloud Forests: Time for Action. Gland, Switzerland: WWF International and IUCN.CrossRefGoogle Scholar
Amelung, T., and Diehl, M. (1992). Deforestation of Tropical Rain Forests: Economic Causes and Impacts on Development, Kieler Studien No. 241. Tübingen, Germany: JCB Mohr Verlag.Google Scholar
Aravena, R., Suzuki, O., and Pollastri, A. (1989). Coastal fog and its relation to ground-water in the IV region of northern Chile. Chemical Geology 79: 83–91.Google Scholar
Asquith, N., and Wunder, S. (eds.) (2008). Payments for Watershed Services: The Bellagio Conversations. Santa Cruz, Bolivia: Fundación Natura Bolivia, Jakarta, Indonesia: CIFOR, and London: International Institute for Environment and Development.Google Scholar
Asquith, N. M., Vargas, M. T., and Wunder, S. (2008). Selling two environmental services: in-kind payments for bird habitat and watershed protection in Los Negros, Bolivia. Ecological Economics 65: 675–684.CrossRefGoogle Scholar
Ataroff, M. (1998). Importance of cloud water in Venezuelan Andean cloud forest water dynamics. In Proceedings of the 1st International Conference on Fog and Fog Collection, eds. Schemenauer, R. S. and Bridgman, H. A., pp. 25–28. Ottawa, Canada: IDRC.Google Scholar
Ataroff, M., and Rada, F. (2000). Deforestation impact on water dynamics in a Venezuelan Andean cloud forest. Ambio 29: 440–444.CrossRefGoogle Scholar
Aylett, G. P. (1985). Irradiance interception, leaf conductance and photosynthesis in Jamaican upper montane rain forest trees. Photosynthetica 19: 323–337.Google Scholar
Aylward, B. (2005). Land-use, hydrological function and economic valuation. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 99–120. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bach, K. (2004). Vegetationskundliche Untersuchungen zur Höhenzonierung tropischer Bergregenwälder in den Anden Boliviens. Ph.D. thesis, University of Göttingen, Göttingen, Germany.Google Scholar
Bach, K., Kessler, M., and Gradstein, S. R. (2007). A simulation approach to determine statistical significance of species turnover peaks in a species-rich tropical cloud forest. Diversity and Distributions 13: 863–870.CrossRefGoogle Scholar
Backeus, I. (1992). Distribution and vegetation dynamics of humid savannas in Africa and Asia. Journal of Vegetation Science 3: 345–356.CrossRefGoogle Scholar
Bailly, C., Benoit de Cognac, G., Malvos, C., Ningre, J. M., and Sarrailh, J. M. (1974). Etude de l'influence du couvert naturel et de ses modifications à Madagascar: expérimentations en bassins versants élémentaires. Cahiers Scientifiques du Centre Technique Forestier Tropical 4: 1–114.Google Scholar
Barrantes Moreno, G. (2006). Economic valuation of water supply as a key environmental service provided by montane oak forest watershed areas in Costa Rica. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 435–448. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Barthlott, W., Lauer, W., and Placke, A. (1996). Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50: 317–327.CrossRefGoogle Scholar
Barthlott, W., Schmit-Neuerburg, V., Nieder, J., and Engwald, S. (2001). Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152: 145–156.CrossRefGoogle Scholar
Barthlott, W., Mutke, J., Rafiqpoor, M. D., Kier, G., and Kreft, H. (2005). Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92 (342): 61–83.Google Scholar
Beck, E., Hartig, K., and Roos, K. (2008a). Forest clearing by slash and burn. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 387–390. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. (eds.) (2008b). Gradients in a Tropical Mountain Ecosystem of Ecuador. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Beck, E., Hartig, K., Roos, K., Preuszing, M., and Nebel, M. (2008c). Permanent removal of the forest: construction of roads and power supply lines. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 377–386. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Beiderwieden, E., Wolff, V., Hsia, Y. J., and Klemm, O. (2008). It goes both ways: measurements of simultaneous evapotranspiration and fog droplet deposition at a montane cloud forest. Hydrological Processes 22: 4181–4189.CrossRefGoogle Scholar
Bellingham, P. J. (1991). Landforms influence patterns of hurricane damage: evidence from Jamaican montane forests. Biotropica 23: 427–433.CrossRefGoogle Scholar
Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., and Emck, P. (2008). Climate. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 63–74. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Benzing, D. H. (1990). Vascular Epiphytes. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bigelow, S., and Kukle, P. (2000). Ferns. In Monteverde: Ecology and Conservation of a Tropical Cloud Forest, eds. Nadkarni, N. M. and Wheelwright, N. T., 89. Oxford, UK: Oxford University Press.Google Scholar
Blackie, J. R. (1979a). The water balance of the Kericho catchments. East African Agricultural and Forestry Journal 43: 55–84.CrossRefGoogle Scholar
Blackie, J. R. (1979b). The water balance of the Kimakia catchments. East African Agricultural and Forestry Journal 43: 155–174.CrossRefGoogle Scholar
Bleiweiss, R. (1998). Origin of hummingbird faunas. Biological Journal of the Linnean Society 65: 77–97.CrossRefGoogle Scholar
Blocken, B., Carmeliet, J., and Poesen, J. (2005). Numerical simulation of the wind-driven rainfall distribution over small-scale topography in space and time. Journal of Hydrology 315: 252–273.CrossRefGoogle Scholar
Blocken, B., Poesen, J., and Carmeliet, J. (2006). Impact of wind on the spatial distribution of rain over micro-scale topography: numerical modeling and experimental verification. Hydrological Processes 20: 345–368.CrossRefGoogle Scholar
Boy, J., Rollenbeck, R., Valarezo, C., and Wilcke, W. (2008). Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Global Biogeochemical Cycles 22, GB4011, doi:10.1029/2007GB003158.CrossRefGoogle Scholar
Brehm, G., Colwell, R. K., and Kluge, J. (2007). The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography 16: 205–219.CrossRefGoogle Scholar
Brehm, G., Homeier, J., Fiedler, K., et al. (2008). Mountain rain forests in Southern Ecuador as a hotspot of biodiversity: limited knowledge and diverging patterns. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 15–24. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Brown, A. D., and Kappelle, M.. (2001). Introducción a los bosques nublados del Neotrópico: una síntesis regional. In Bosques nublados del Neotrópico, eds. Kappelle, M. and Brown, A. D., pp. 25–40. Santo Domingo de Heredia, Costa Rica: Editorial INBio and IUCN.Google Scholar
Brown, M. B., Roca, I., Vallejo, A., et al. (1996). A Valuation Analysis of the Role of Cloud Forests in Watershed Protection: Sierra de las Minas Biosphere Reserve, Guatemala and Cusuco N.P. Honduras. Philadelphia, PA: RARE Center for Tropical Conservation.Google Scholar
Bruijnzeel, L. A. (2001). Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research 1: 1–18.Google Scholar
Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees?Agriculture, Ecosystems and Environment 104: 185–228.CrossRefGoogle Scholar
Bruijnzeel, L. A. (2005). Tropical montane cloud forest: a unique hydrological case. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 462–483. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bruijnzeel, L. A. (ed.) (2006). Hydrological Impacts of Converting Tropical Montane Cloud Forest to Pasture, with Initial Reference to Northern Costa Rica, Final Technical Report for Project R7991, DFID Forestry Research Programme. Amsterdam, the Netherlands: VU University Amsterdam. Also available at www.ambiotek.com/fiesta.Google Scholar
Bruijnzeel, L. A., and Hamilton, L. S. (2000). Decision Time for Cloud Forests, IHP Humid Tropics Programme Series No. 13. Paris: UNESCO Division of Water Sciences; Gland, Switzerland: WWF and IUCN. Also available at http://sea.unep-wcmc.org/forest/cloudforest/index.cfm.Google Scholar
Bruijnzeel, L. A. and Proctor, J. (1995). Hydrology and biochemistry of tropical montane cloud forests: what do we really know? In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 38–78. New York: Springer-Verlag.CrossRefGoogle Scholar
Bruijnzeel, L. A., and Veneklaas, E. J. (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79: 3–9.CrossRefGoogle Scholar
Bruijnzeel, L. A., Waterloo, M. J., Proctor, J., Kuiters, A. T., and Kotterink, B. (1993). Hydrological observations in montane rain-forests on Gunung-Silam, Sabah, Malaysia, with special reference to the “Massenerhebung” effect. Journal of Ecology 81: 145–167.CrossRefGoogle Scholar
Brünig, E. F. (1996). Conservation and Management of Tropical Rainforests: An Integrated Approach to Sustainability. Wallingford, UK: CAB International.Google Scholar
Bubb, P., May, I., Miles, L., and Sayer, J. (2004). Cloud Forest Agenda. Cambridge, UK: UNEP–World Conservation Monitoring Centre. Also available at http://sea.unep-wcmc.org/forest/cloudforest/index.cfm.Google Scholar
Caceres, G. (1981). Importancia hidrologica de la intercepción horizontal en un bosque muy humedo premontano en Balalaica, Turrialba, Costa Rica. M.Sc. thesis, University of Costa Rica, Turrialba, Costa Rica.Google Scholar
Calvo, J. C. (1986). An evaluation of Thornthwaite's water balance technique in predicting stream runoff in Costa Rica. Hydrological Sciences Journal 31: 51–60.CrossRefGoogle Scholar
Calvo, J. (2000). Case study: payments for watershed services in Costa Rica. In Forests in Sustainable Mountain Development: A State-of-Knowledge Report for 2000, eds. Price, M. F. and Butt, N., pp. 428–429. Wallingford, UK: CAB International.Google Scholar
Cassells, D. S., and Bruijnzeel, L. A. (2005). Guidelines for controlling vegetation, soil and water impacts of timber harvesting in the humid tropics. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 840–851. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Cavelier, J. (1990). Tissue water relations in elfin cloud forest tree species of Serranía de Macuira, Guajira, Colombia. Trees: Structure and Function 4: 155–163.CrossRefGoogle Scholar
Cavelier, J. (1995). Reforestation with the native tree Alnus acuminata : effects on phytodiversity and species richness in an upper montane rain forest area of Columbia. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J.O., and Scatena, F.N., pp. 125–137. New York: Springer-Verlag.CrossRefGoogle Scholar
Cavelier, J. (1996). Environmental factors and ecophysiological processes along altitudinal gradients in wet tropical mountains. In Tropical Forest Plant Ecophysiology, eds. Mulkey, S. S., Chazdon, R. L., and Smith, A. P., pp. 399–439. New York: Chapman and Hall.CrossRefGoogle Scholar
Cavelier, J., and Mejia, C. A. (1990). Climatic factors and tree stature in the elfin cloud forest of Serranía de Macuira, Colombia. Agricultural and Forest Meteorology 53: 105–123.CrossRefGoogle Scholar
Cavelier, J., Jaramillo, M., Solis, D., and Leon, D. (1997). Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology 193: 83–96.CrossRefGoogle Scholar
Cavelier, J., Aide, T. M., Santos, C., Eusse, A. M., and Dupuy, J. M. (1998). The savannization of moist forests in Sierra Nevada de Santa Marta, Colombia. Journal of Biogeography 25: 901–912.CrossRefGoogle Scholar
Cavelier, J., Tanner, E., and Santamaria, J. (2000). Effect of water, temperature and fertilizers on soil nitrogen net transformations and tree growth in an elfin cloud forest of Colombia. Journal of Tropical Ecology 16: 83–99.CrossRefGoogle Scholar
Cayuela, L., Golicher, D. J., and Rey-Benayas, J. M. (2006). The extent, distribution, and fragmentation of vanishing montane cloud forest in the highlands of Chiapas, Mexico. Biotropica 38: 544–554.CrossRefGoogle Scholar
Chang, M., and Flannery, L. A. (2001). Spherical gages for improving the accuracy of precipitation measurements. Hydrological Processes 15: 643–654.CrossRefGoogle Scholar
Churchill, S. P., Balslev, H., Forero, E., and Luteyn, J. L. (eds.) (1996). Biodiversity and Conservation of Neotropical Montane Forests. New York: New York Botanical Garden.Google Scholar
Clark, K. L., Nadkarni, N. M., Schaefer, D., and Gholz, H. L. (1998). Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Journal of Tropical Ecology 14: 27–45.CrossRefGoogle Scholar
Clark, L. G. (1995). Diversity and distribution of the Andean woody bamboos (Poaceae: Bambuseae). In Biodiversity and Conservation of Neotropical Montane Forests, eds. Churchill, S. P., Balslevee, H., Forero, E., and Luteyn, J. L., pp. 501–512. New York: New York Botanical Garden.Google Scholar
Collins, N. M. (1980). The distribution of soil macrofauna on the west ridge of Gunung (Mount) Mulu, Sarawak. Oecologia 44: 263–275.CrossRefGoogle ScholarPubMed
Collins, N. M., Anderson, J. M., and Vallack, H. W. (1984). Studies on the soil invertebrates of lowland and montane rain forest in the Gunung Mulu National Park. Sarawak Museum Journal 30(51): 19–33.Google Scholar
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C., and Longino, J. T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet Tropics. Science 322: 258–261.CrossRefGoogle ScholarPubMed
Cordell, S., Goldstein, G., Müeller-Dombois, D., Webb, D., and Vitousek, P. M. (1998). Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113: 188–196.CrossRefGoogle ScholarPubMed
Cordero, R. A. (1999). Ecophysiology of Cecropia schreberiana saplings in two wind regimes in an elfin cloud forest: growth, gas exchange, architecture, and stem biomechanics. Tree Physiology 19: 153–165.CrossRefGoogle Scholar
Cortés, A. M., Ramírez-Pinilla, M. P., Suárez, H. A., and Tovar, E. (2008). Edge effects on richness, abundance and diversity of frogs in Andean cloud forest fragments. South American Journal of Herpetology 3: 213–222.CrossRefGoogle Scholar
Crutzen, P. J., and Stoermer, E. F. (2000). “The Anthropocene.”IGBP Newsletter 41: 17–18.Google Scholar
Cubiñá, A., and Aide, T. M. (2001). The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica 33: 260–267.CrossRefGoogle Scholar
Cuervo, A. M., Salaman, P., Donegan, T., and Ochoa, J. M. (2001). A new species of Piha (Cotingidae: Lipaugus) from the Cordillera Central of Colombia. Ibis 143: 353–368.CrossRefGoogle Scholar
D'Antonio, C. M. and Vitousek, P. M.. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23: 63–87.CrossRefGoogle Scholar
Daugherty, H. E. (1973). The Montecristo cloud-forest of El Salvador: a chance for protection. Biological Conservation 5: 227–230.CrossRefGoogle Scholar
Dawson, T. E. (1998). Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117: 476–485.CrossRefGoogle ScholarPubMed
Debouck, D. G., and Libreros Ferla, D.. (1995). Neotropical montane forests: a fragile home of genetic resources of wild relatives of new world crops. In Biodiversity and Conservation of Neotropical Montane Forests, eds. Churchill, S. P., Balslev, H., Forero, E., and Luteyn, J. L., pp. 561–577. New York: New York Botanical Garden.Google Scholar
Dietz, J., Hölscher, D., Leuschner, Ch., and Hendrayanto, . (2006). Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. Forest Ecology and Management 237: 170–178.CrossRefGoogle Scholar
Dinerstein, E., Olson, D. M., Graham, D. J., et al. (1995). A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean. Washington, DC: The World Bank.CrossRefGoogle Scholar
Doumenge, C., Gilmour, D., Ruiz-Perez, M., and Blockhus, J. (1995). Tropical montane cloud forests: conservation status and management issues. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 24–37. New York: Springer-Verlag.CrossRefGoogle Scholar
Duellman, W. E. (1988). Patterns of species diversity in anuran amphibians in the American tropics. Annals of the Missouri Botanical Garden 75: 79–104.CrossRefGoogle Scholar
Dunn, R. R. (2000). Bromeliad communities in isolated trees and three successional stages of an Andean cloud forest in Ecuador. Selbyana 21: 137–143.Google Scholar
Edwards, K. A. (1979). The water balance of the Mbeya experimental catchments. East African Agricultural and Forestry Journal 43: 231–247.CrossRefGoogle Scholar
Edwards, P. J. (1982). Studies of mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in throughfall and litter fall. Journal of Ecology 70: 807–827.CrossRefGoogle Scholar
Emanuel, K. A. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436: 686–688.CrossRefGoogle ScholarPubMed
Etter, A., and Wijngaarden, W. (2000). Patterns of landscape transformation in Colombia,with emphasis on the Andean region. Ambio 29: 432–439.CrossRefGoogle Scholar
Eugster, W., Burkard, R., Holwerda, F., Scatena, F. N., and Bruijnzeel, L. A. (2006). Characteristics of fog and fog-water fluxes in a Puerto Rican elfin cloud forest. Agricultural and Forest Meteorology 139: 288–306.CrossRefGoogle Scholar
Ewel, J. J. (1980). Tropical succession: manifold routes to maturity. Biotropica 12: 2–7.CrossRefGoogle Scholar
Fallas, J. (2002). Net precipitation patterns in undisturd and fragmented Costa Rican cloud forests. In Proceedings of the 2nd International Colloquium on Hydrology and Water Management, ed. Gladwell, J. S., pp. 389–398. Panamá City, Panamá: CATHALAC, and Paris: IHP–UNESCO.Google Scholar
Fetcher, N., Cordero, R. A., and Voltzow, J. (2000). Lack of ecotypic differentiation: plant response to elevation, population origin, and wind in the Luquillo Mountains, Puerto Rico. Biotropica 32: 225–234.CrossRefGoogle Scholar
Fjeldså, J., and Rahbek, C. (1997). Species richness and endemism in South American birds: implications for the design of networks of nature reserves. In Tropical Forest Remnants, eds. Laurance, W. F. and Bierregaard, R. D. B., pp. 466–482. Chicago, IL: University of Chicago Press.Google Scholar
Fleischbein, K., Wilcke, W., Valarezo, C., Zech, W., and Knoblich, K. (2006). Water budgets of three small catchments under montane forest in Ecuador: experimental and modelling approach. Hydrological Processes 20: 2491–2507.CrossRefGoogle Scholar
Flenley, J. R. (1995). Cloud forest, the Massenerhebung effect, and ultraviolet insolation. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 150–155. New York: Springer-Verlag.CrossRefGoogle Scholar
Førland, E. J., Allerup, P., Dahlström, B., et al. (1996). Manual for Operational Correction of Nordic Precipitation Data. Oslo: Norwegian Meteorological Institute.Google Scholar
Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73–106.CrossRefGoogle Scholar
Frahm, J. P., and Gradstein, S. R. (1991). An altitudinal zonation of tropical rain forests using bryophytes. Journal of Biogeography 18: 669–676.CrossRefGoogle Scholar
Frumau, K. F. A., Bruijnzeel, L. A., and Tobón, C. (2006a). Hydrological Measurement Protocol for Montane Cloud Forests, Appendix 2 to Final Technical Report for Project R7991, DFID Forestry Research Programme. Amsterdam, the Netherlands: VU University Amsterdam. Also available at www.ambiotek.com/fiesta.Google Scholar
Frumau, K. F. A., Bruijnzeel, L. A., and Tobón, C. (2006b). Measurement of precipitation in montane tropical catchments: comparative performance of conventional, spherical and “potential” rain gages. In Forest and Water in a Changing Environment, eds. Liu, S. R., Sun, G., and Sun, P. S., pp. 104–108. Vienna: IUFRO, and Beijing: Chinese Academy of Forestry.Google Scholar
Gabriel, G., and Jauze, L. (2008). Fog water interception by Sophora denudata trees in a Réunion upper montane forest, Indian Ocean. Atmospheric Research 87: 338–351.CrossRefGoogle Scholar
García-García, F., and Zarraluqui, V. (2008). A fog climatology for Mexico. Die Erde 139: 45–60.Google Scholar
García-Santos, G. (2007). An ecohydrological and soils study in a montane cloud forest in the National Park of Garajonay, La Gomera (Canary Islands, Spain). Ph.D. thesis, VU University Amsterdam, Amsterdam, the Netherlands. Also available at www.falw.vu.nl/nl/onderzoek/earth-sciences/geo-environmental-science-and-hydrology/hydrology-dissertations/index.asp.Google Scholar
Garriguata, M. R., and Balvanera, P.. (2009). Tropical forest service flows. Forest Ecology and Management, doi:10.1016/j.foreco.2009.06.025.CrossRefGoogle Scholar
Gentry, A. H. (1982). Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69: 557–593.CrossRefGoogle Scholar
Gentry, , A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1–34.CrossRefGoogle Scholar
Gentry, A. H. (1992). Diversity and floristic composition of Andean forests of Peru and adjacent countries: implications for their conservation. In Biogeografía, ecología y conservación del bosque montano en el Perú, Memorias Museo de Historia Natural No. 21, eds. Young, K. R. and Valencia, N., pp. 11–29. Lima, Perú: UNMSM.Google Scholar
Gentry, A. H. (1995). Patterns of diversity and floristic composition in neotropical montane forests. In Biodiversity and Conservation of Neotropical Montane Forests, eds. Churchill, S. P., Balslev, H., Forero, E., and Luteyn, J. L., pp. 103–126. New York: New York Botanical Garden.Google Scholar
Gerold, G., Schawe, M., and Bach, K. (2008). Hydrometeorologic, pedologic and vegetation patterns along an elevational transect in the montane forest of the Bolivian Yungas. Die Erde 139: 141–168.Google Scholar
Giambelluca, T. W., and Nullet, D. A. (1992). Evaporation at high elevations in Hawaii. Journal of Hydrology 136: 219–235.CrossRefGoogle Scholar
Giambelluca, T. W., Martin, R. E., Asner, G. P., et al. (2009). Evapotranspiration and energy balance of native wet montane cloud forest in Hawai'i. Agricultural and Forest Meteorology 149: 230–243.CrossRefGoogle Scholar
Gill, A. M. (1969). The ecology of an elfin forest in Puerto Rico. VI. Aerial roots. Journal of the Arnold Arboretum 50: 197–209.Google Scholar
Gomes, L. G. L., Oostra, V., Nijman, V., Cleef, A. M., and Kappelle, M. (2008). Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biological Conservation 141: 860–871.CrossRefGoogle Scholar
Gomez-Cardenas, M. (2009). Transpiration by contrasting vegetation cover types in the montane cloud forest belt of eastern Mexico. Ph.D. thesis, Iowa State University, Ames, IA, USA.Google Scholar
Gómez-Laurito, J., and Gómez-P, L. D.. (1991). Ticodendraceae: a new family of flowering plants. Annals of the Missouri Botanical Garden 78 87–88.CrossRefGoogle Scholar
Gomez-Peralta, D., Oberbauer, S. F., McClain, M. E., and Philippi, T. E. (2008). Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. Forest Ecology and Management 255: 1315–1325.CrossRefGoogle Scholar
Gonggrijp, L. (1941). Evaporation from montane forest in West Java at an altitude of 1750–2000 m a.s.l. Tectona 34: 437–447 (in Dutch, with a summary in English).Google Scholar
Gonzalez, G., Garcia, E., Cruz, V., et al. (2007). Earthworm communities along an elevation gradient in Northeastern Puerto Rico. European Journal of Soil Biology 43: S24–S32.CrossRefGoogle Scholar
González-Espinosa, M., Rey-Benayas, J. M., and Ramírez-Marcial, N. (eds.) (2008). Restauración de bosques en América Latina. México City, Mexico: Mundi-Prensa.Google Scholar
Gradstein, S. R. (2008). Epiphytes of tropical montane forests: impact of deforestation and climate change. In The Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, eds. Gradstein, S. R., Homeier, J., and Gansert, D., pp. 51–65. Göttingen, Germany: Göttingen Centre for Biodiversity and Ecology.Google Scholar
Gradstein, S. R., and Pócs, T.. (1989). Bryophytes. In Tropical Rain Forest Ecosystems, eds. Lieth, H. and Werger, M. J. A., pp. 311–325. Amsterdam, the Netherlands: Elsevier.CrossRefGoogle Scholar
Gradstein, S. R., Churchill, S. P., and Allen, N. Salazar (2001). Guide to the Bryophytes of Tropical America, Memoirs of the New York Botanical Garden No. 86. New York: New York Botanical Garden.Google Scholar
Grau, H. R., Aide, T. M., Zimmerman, J. K., et al. (2003). The ecological consequences of socioeconomic and land-use changes in post-agriculture Puerto Rico. BioScience 53: 1159–1168.CrossRefGoogle Scholar
Grau, H. R., Perez-Ceballos, M., Martinuzzi, S., Encarnación, X., and Aide, T. M. (2008). Cambios socioeconómicos y regeneración del bosque en República Dominicana. In Restauración ecológica en América Latina, eds. Gonzalez-Espinosa, M., Rey-Benayas, J. M., and Ramírez-Marcial, N., pp. 211–227. México City, Mexico: Mundi-Prensa.Google Scholar
Grenyer, R., Orme, C. D. L., Jackson, S. F., et al. (2006). Global distribution and conservation of rare and threatened vertebrates. Nature 444: 93–96.CrossRefGoogle ScholarPubMed
Groombridge, B. (ed.) (1992). Global Biodiversity: Status of the Earth's Living Resources. London: Chapman and Hall.CrossRefGoogle Scholar
Grubb, P. J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83–107.CrossRefGoogle Scholar
Guariguata, M. R., Sáenz, G. P., and Pedroni, L. (2006). Regeneration dynamics in a Costa Rican montane oak forest after reduced-impact logging. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 235–244. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Günter, S., Weber, M., Erreis, R., and Aguirre, N. (2006). Influence of distance to forest edges on natural regeneration of abandoned pastures: a case study in the tropical montane rain forest of Southern Ecuador. European Journal of Forest Research, doi:10.1007/s10342–006–0156–0.CrossRefGoogle Scholar
Günter, S., Cabrera, O., Weber, M., et al. (2008). Natural forest management in Neotropical mountain rain forests: an ecological experiment. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, E. J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 363–375. Berlin: Springer-Verlag.Google Scholar
Günter, S., Gonzalez, P., Alvarez, G., et al. (2009). Determinants of successful regeneration of abandoned pastures in the Andes: soil conditions and vegetation cover. Forest Ecology and Management 258: 81–91.CrossRefGoogle Scholar
Guswa, A. J., Rhodes, A. L., and Newell, S. E. (2007). Importance of orographic precipitation to the water resources of Monteverde, Costa Rica. Advances in Water Resources 30: 2098–2112.CrossRefGoogle Scholar
Haber, W. (1991). Lista provisional de las plantas de Monteverde, Costa Rica. Brenesia 34: 63–120.Google Scholar
Haber, W. (2000). Plants and vegetation. In Monteverde: Ecology and Conservation of a Tropical Cloud Forest, eds. Nadkarni, N. M. and Wheelwright, N. T., pp. 39–70. Oxford, UK: Oxford University Press.Google Scholar
Hafkenscheid, R. L. L. J. (2000). Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Ph.D. thesis, VU University Amsterdam, Amsterdam, the Netherlands. Also available at http://dare.ubvu.vu.nl/bitstream/1871/12734/1/tekst.pdf.Google Scholar
Hafkenscheid, R. L. L. J., Bruijnzeel, L. A., Jeu, R. A. M., and Bink, N. J. (2002). Water budgets of two upper montane rain forests of contrasting stature in the Blue Mountains, Jamaica. In Proceedings of the 2 International Colloquium on Hydrology and Water Management in the Humid Tropics, ed. Gladwell, J. S., pp. 399–424. Panamá City, Panamá: CATHALAC, and Paris: IHP–UNESCO.Google Scholar
Hamilton, L. S. (1995). A Campaign for Cloud Forests. Gland, Switzerland: IUCN.Google Scholar
Hamilton, L. S. (2005). Red flags of warning in land clearing. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 866–880. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hamilton, L. S., Juvik, J. O., and Scatena, F. N. (eds.) (1995a). Tropical Montane Cloud Forests. New York: Springer-Verlag.CrossRefGoogle Scholar
Hamilton, L. S., Juvik, J. O., and Scatena, F. N. (1995b). The Puerto Rico tropical montane cloud forest symposium: introduction and workshop synthesis. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 1–16. New York: Springer-Verlag.CrossRefGoogle Scholar
Harr, R. D. (1982). Fog-drip in the Bull Run municipal watershed, Oregon. Water Resources Bulletin 18: 785–789.Google Scholar
Hartig, K., and Beck, E. (2003). The bracken fern (Pteridium arachnoideum Kaulf.) dilemma in the Andes of Southern Ecuador. Ecotropica 9: 3–13.Google Scholar
Hättenschwiler, S., Hagerman, A. E., and Vitousek, P. M. (2003). Polyphenols in litter from tropical montane forests across a wide range in soil fertility. Biogeochemistry 64: 129–148.CrossRefGoogle Scholar
Heaney, L. R. (2001). Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography 10: 15–39.CrossRefGoogle Scholar
Hemp, A. (2002). Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. I. Altitudinal distribution. Plant Ecology 159: 211–239.CrossRefGoogle Scholar
Hemp, A. (2005a). Continuum or zonation? Altitudinal gradients in the forests on Mt. Kilimanjaro. Plant Ecology 184: 27–42.CrossRefGoogle Scholar
Hemp, A. (2005b). Climate change driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Global Change Biology 11: 1013–1023.CrossRefGoogle Scholar
Herrera, B., and Chaverri, A. (2006). Criteria and indicators for sustainable management of Central American montane oak forests. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 421–434. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Herrmann, R. (1971). Die zeitliche Anderung der Wasserbindung im Boden unter verschiedenen Vegetationsformationen der Höhenstufen eines tropischen Hochgebirges (Sierra Nevada de Sta. Marta, Kolumbien). Erdkunde 25: 90–102.CrossRefGoogle Scholar
Herwitz, S. (1991). Aboveground adventitious roots and stemflow chemistry of Ceratopetalum virchowii in an Australian montane tropical rain forest. Biotropica 23: 210–218.CrossRefGoogle Scholar
Herwitz, S., and Slye, R. E. (1992). Spatial variation in the interception of inclined rainfall by a tropical rainforest canopy. Selbyana 13: 62–71.Google Scholar
Hetsch, W., and Hoheisel, H. (1976). Standorts- und Vegetationsgliederung in einem tropischen Nebelwald. Allgemeine Forst- und Jagdzeitung 147: 200–207.Google Scholar
Hildebrandt, A., and Eltahir, E. A. B. (2006). Forest on the edge: seasonal cloud forest in Oman creates its own niche. Geophysical Research Letters 33, L11401, doi:10.1029/2006GL026022.CrossRefGoogle Scholar
Hobbs, R. J., and Norton, D. A. (1996). Towards a conceptual framework for restoration ecology. Restoration Ecology 4: 93–110.CrossRefGoogle Scholar
Holder, C. D. (2003). Fog precipitation in the Sierra de las Minas Biosphere Reserve, Guatemala. Hydrological Processes 17: 2001–2010.CrossRefGoogle Scholar
Holder, C. D. (2004). Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management 190: 373–384.CrossRefGoogle Scholar
Holl, K. D., and Kappelle, M. (1999). Tropical forest recovery and restoration. Trends in Ecology and Evolution 14: 378–379.CrossRefGoogle Scholar
Holl, K. D., Loik, M. E., Lin, E. H. V., and Samuels, I. A. (2000). Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restoration Ecology 8: 339–349.CrossRefGoogle Scholar
Holl, K. D., Crone, E. E., and Schultz, C. B. (2003). Landscape restoration: moving from generalities to methodologies. BioScience 53: 491–502.CrossRefGoogle Scholar
Hölscher, D., Köhler, L., Dijk, A. I. J. M., and Bruijnzeel, L. A. (2004). The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology 292: 308–322.CrossRefGoogle Scholar
Holwerda, F. (2005). Water and energy budgets of rain forests along an elevation gradient under maritime tropical conditions. Ph.D. thesis, VU University Amsterdam, Amsterdam, the Netherlands. Also available at www.falw.vu.nl/nl/onderzoek/earth-sciences/geo-environmental-science-and-hydrology/hydrology-dissertations/index.asp.Google Scholar
Holwerda, F., Burkard, R., Eugster, W. E., et al. (2006). Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrological Processes 20: 2669–2692.CrossRefGoogle Scholar
Holwerda, F., Barradas, V. L., Cervantes, J., and Bruijnzeel, L. A. (2007). Balances hídricos y de energía de un cafetal de sombra en el centro de Veracruz, México. In Reporte técnico final del proyecto INE/A1–064/2007. Xalapa, Veracruz, México: Instituto de Ecología, and Amsterdam, the Netherlands: VU University Amsterdam.Google Scholar
Holwerda, F., Bruijnzeel, L. A., Muñoz, L. E., Equihua, M., and Asbjornsen, H. (2010). Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. Journal of Hydrology384: 84–96.CrossRefGoogle Scholar
Holz, I., and Gradstein, S. R. (2005a). Phytogeography of the bryophyte floras of oak forests and paramo of the Cordillera de Talamanca, Costa Rica. Journal of Biogeography 32: 1591–1609.CrossRefGoogle Scholar
Holz, I., and Gradstein, S. R. (2005b). Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica: species richness, community composition and ecology. Plant Ecology 178: 89–109.CrossRefGoogle Scholar
Holz, I., Gradstein, S. R., Heinrichs, J., and Kappelle, M. (2002). Bryophyte diversity, microhabitat differentiation and distribution of life forms in Costa Rican upper montane Quercus forest. The Bryologist 105: 334–348.CrossRefGoogle Scholar
Homeier, J., Werner, F. A., Gradstein, S. R., Breckle, S. -W., and Richter, M. (2008). Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 425–431. Berlin: Springer-Verlag.Google Scholar
Honey, M. (2008). Ecotourism and Sustainable Development: Who Owns Paradise?Washington, DC: Island Press.Google Scholar
Hutley, L. B., Doley, D., Yates, D., and Boonsaner, A. (1997). Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog. Australian Journal of Botany 45: 311–329.CrossRefGoogle Scholar
Hyndman, D. C., and Menzies, J. I. (1990). Rain forests of the Ok Tedi headwaters, New Guinea: an ecological analysis. Journal of Biogeography 17: 241–273.CrossRefGoogle Scholar
Ingwersen, J. B. (1985). Fog drip, water yield and timber harvesting in the Bull Run Municipal Watershed, Oregon. Water Resources Bulletin 21: 469–473.CrossRefGoogle Scholar
Islebe, G. A., and Hooghiemstra, H. (2006). Effects of the Younger Dryas cooling event on late Quaternary montane oak forest in Costa Rica. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 29–37. Berlin: Springer-Verlag.CrossRefGoogle Scholar
,ITTO (1992). Criteria for the Measurement of Sustainable Tropical Forest Management, ITTO Policy Development Series No. 2. Yokohama, Japan: International Timber Trade Organization.Google Scholar
,IUCN, Conservation International, and NatureServe (2008a). An Analysis of Amphibians on the 2008 IUCN Red List. Gland, Switzerland: IUCN. Also available at www.iucnredlist.org/amphibians.Google Scholar
,IUCN, Conservation International, Arizona State University, Texas A&M University, University of Rome, University of Virginia, and Zoological Society London. (2008b). An Analysis of Mammals on the 2008 IUCN Red List. Available at www.iucnredlist.org/mammals.
,IUCN (2009). Fighting for Forest Frogs, IUCN Species Survival Commission, Amphibian Specialist Group. Gland, Switzerland: IUCN. Also available at www.iucn.org/about/work/programmes/species/red_list/?3061/Fighting-for-forest-frogs.Google Scholar
Jin, Y., Rossow, W. B., and Wylie, D. P. (1996). Comparison of the climatologies of high-level clouds from HIRS and ISCCP. Journal of Climate 9: 2850–2879.2.0.CO;2>CrossRefGoogle Scholar
Juen, I., Georges, C., and Kaser, G. (2007). Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Global and Planetary Change 59: 37–48.CrossRefGoogle Scholar
Juvik, J. O., and Ekern, P. C. (1978). A Climatology of Mountain Fog on Mauna Loa, Hawaii Island, Technical Report No. 118. Honolulu, HI: Water Resources Research Center, University of Hawai'i.Google Scholar
Juvik, J. O., and Nullet, D. (1995a). Comments on “a proposed standard fog collector for use in high elevation regions.”Journal of Applied Meteorology 34: 2108–2110.2.0.CO;2>CrossRefGoogle Scholar
Juvik, J. O., and Nullet, D. (1995b). Relationships between rainfall, cloud-water interception and canopy throughfall in a Hawaiian montane forest. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 165–182. New York: Springer-Verlag.CrossRefGoogle Scholar
Kapos, V., Rhind, J., Edwards, M., and Price, M. F. (2000). Developing a map of the world's mountain forests. In Forests in Sustainable Mountain Development: A State-of-Knowledge Report for 2000, eds. Price, M. F. and Butt, N., pp. 4–9. Wallingford, UK: CAB International. Also available at www.unep-wcmc.org/habitats/mountains/homepage.htm.CrossRefGoogle Scholar
Kappelle, M. (2001). Bosques nublados de Costa Rica. In Bosques nublados del Neotrópico, eds. Kappelle, M. and Brown, A. D., pp. 301–370. Santo Domingo de Heredia, Costa Rica: Editorial INBio and IUCN.Google Scholar
Kappelle, M. (2004). Tropical montane forests. In Encyclopedia of Forest Sciences, Vol. 4, eds. Burley, J., Evans, J., and Youngquist, J. A., pp. 1782–1793. Oxford, UK: Elsevier.CrossRefGoogle Scholar
Kappelle, M. (2006). Neotropical montane oak forests: overview and outlook. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 449–467. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kappelle, M., and Brown, A. D. (eds.) (2001). Bosques nublados del Neotrópico. Santo Domingo de Heredia, Costa Rica: Editorial INBio and IUCN.Google Scholar
Kappelle, M., and Uffelen, G. J. (2006). Altitudinal zonation of montane oak forests along climate and soil gradients in Costa Rica. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 39–54. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kappelle, M., Cleef, A. M., and Chaverri, A. (1992). Phytogeography of Talamanca montane Quercus forests, Costa Rica. Journal of Biogeography 19: 299–315.CrossRefGoogle Scholar
Kappelle, M., Velzen, H. P., and Wijtzes, W. H. (1994). Plant communities of montane secondary vegetation in the Cordillera de Talamanca, Costa Rica. Phytocoenologia 22: 449–484.CrossRefGoogle Scholar
Kappelle, M., Kennis, P. A. F., and Vries, R. A. J. (1995a). Changes in diversity along a successional gradient in a Costa Rican upper montane Quercus forest. Biodiversity and Conservation 4: 10–34.CrossRefGoogle Scholar
Kappelle, M., Uffelen, J. G., and Cleef, A. M. (1995b). Altitudinal zonation of montane Quercus forests along two transects in the Chirripó National Park, Costa Rica. Vegetatio (Plant Ecology) 119: 119–153.CrossRefGoogle Scholar
Kappelle, M., Geuze, T., Leal, M., and Cleef, A. M. (1996). Successional age and forest structure in a Costa Rican upper montane Quercus forest. Journal of Tropical Ecology 12: 681–698.CrossRefGoogle Scholar
Kappelle, M., Avertin, G., Juárez, M. E., and Zamora, N.. (2000). Useful plants within a campesino community in a Costa Rican montane cloud forest. Mountain Research and Development 20: 162–171.CrossRefGoogle Scholar
Kaser, G., Georges, C., Juen, I., and Moelg, T. (2005). Low latitude glaciers: unique global climate indicators and essential contributors to regional fresh water supply – a conceptual approach. In Global Change and Mountain Regions: A State of Knowledge Overview, eds. Huber, U., Bugmann, H. K. M., and Reasoner, M. A., pp. 185–196. New York: Kluwer.CrossRefGoogle Scholar
Kessler, M. (2002). The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. Journal of Biogeography 29: 1159–1166.CrossRefGoogle Scholar
Kessler, M., and Kluge, J. (2008). Diversity and endemism in tropical montane forests: from patterns to processes. In The Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, eds. Gradstein, S.R., Homeier, J., and Gansert, D., pp. 35–50. Göttingen, Germany: Göttingen Centre for Biodiversity and Ecology.Google Scholar
Kessler, M., and Lehnert, M. (2009). Do ridge habitats contribute to pteridophyte diversity in tropical montane forests? A case study from southeastern Ecuador. Journal of Plant Research 122: 421–428.CrossRefGoogle ScholarPubMed
Kier, G., and Barthlott, W. (2001). Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodiversity and Conservation 10: 1513–1529.CrossRefGoogle Scholar
Kier, G., Mutke, J., Dinerstein, E., et al. (2005). Global patterns of plant diversity and floristic knowledge. Journal of Biogeography 32: 1–10.CrossRefGoogle Scholar
Kikkawa, J., and Williams, W. T. (1971). Altitudinal distribution of land birds in New Guinea. Search 2: 64–65.Google Scholar
Kitayama, K. (1995). Biophysical conditions of the montane cloud forests of Mount Kinabalu, Sabah, Malaysia. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 183–197. New York: Springer-Verlag.CrossRefGoogle Scholar
Kitayama, K., and Müller-Dombois, D. (1994). An altitudinal transect analysis of the windward vegetation on Haleakala, a Hawaiian island mountain. I. Climate and soils. Phytocoenologia 24: 111–133.CrossRefGoogle Scholar
Kleidon, A., and Mooney, H. A. (2008). A global distribution of biodiversity inferred from climatic constraints: results from a process-based modelling study. Global Change Biology 6: 507–523.CrossRefGoogle Scholar
Köhler, L., Tobón, C., Frumau, K. F. A., and Bruijnzeel, L. A. (2007). Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecology 193: 171–184.CrossRefGoogle Scholar
Körner, C., and Spehn, E. M. (eds.) (2002). Mountain Biodiversity: A Global Assessment. Boca Raton, FL: Parthenon.Google Scholar
Krabbe, N., Agro, D. J., Rice, N. H., et al. (1999). A new species of Antpitta (Formicariidae: Grallaria) from the southern Ecuadorian Andes. The Auk 116: 882–890.CrossRefGoogle Scholar
Kreft, H., and Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences USA 104: 5925–5930.CrossRefGoogle ScholarPubMed
Kumagai, T., Saitoh, T. M., Sato, Y., et al. (2005). Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology 128: 81–92.CrossRefGoogle Scholar
Kumaran, S. (2008). Hydrometeorology of Tropical montane rain forests of Gunung Brinchang, Pahang Darul Makmur, Malaysia. Ph.D. thesis, University of Putra Malaysia, Serdang, Malaysia.Google Scholar
Küppers, M., Motzer, T., Schmitt, D., et al. (2008). Stand structure, transpiration responses in trees and vines, and stand transpiration of different forest types within the mountain rainforest. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 243–258. Berlin: Springer-Verlag.CrossRefGoogle Scholar
LaBastille, A., and Pool, D. J. (1978). On the need for a sytem of cloud-forest parks in Middle America and the Caribbean. Environmental Conservation 5: 183–190.CrossRefGoogle Scholar
Lawton, R. O. (1982). Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. American Journal of Botany 69: 1224–1230.CrossRefGoogle Scholar
Lawton, R. O., and Dryer, V. (1980). The vegetation of the Monteverde Cloud Forest Preserve. Brenesia 18: 101–116.Google Scholar
Lawton, R. O., Nair, U. S., Pielke, R. A., and Welch, R. M. (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294: 584–587.Google ScholarPubMed
Leakey, R. J. G., and Proctor, J. (1987). Invertebrates in the litter and soil at a rnge of altitudes on Gunng Silam, a small ultrabasic mountain in Sabah. Journal of Tropical Ecology 3: 119–129.CrossRefGoogle Scholar
Leo, M. (1995). The importance of tropical montane cloud forests for preserving vertebrate endemism in Peru: the Río Abiseo National Park as a case study. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 198–211. New York: Springer-Verlag.CrossRefGoogle Scholar
Tellier, V., Carrasco, A., and Asquith, N. (2009). Attempts to determine effects of forest cover on streamflow by hydrological measurements in Los Negros, Bolivia. Forest Ecology and Management, doi:10.1016/j.foreco.2009.04.031.Google Scholar
Leuschner, C h., Moser, G., Bertsch, C., Röderstein, M., and Hertel, D. (2007). Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8: 219–230.CrossRefGoogle Scholar
Lieberman, D., Lieberman, M., Peralta, R., and Hartshorn, G. S. (1996). Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84: 137–152.CrossRefGoogle Scholar
Lindberg, K., and Hawkins, D. E. (eds.) (1993). Ecotourism: A Guide for Planners and Managers. North Bennington, VT: The Ecotourism Society.Google Scholar
Lips, K. R., Green, D. E., and Pappendick, R. (2003). Chytridiomycosis in wild frogs from southern Costa Rica. Journal of Herpetology 37: 215–218.CrossRefGoogle Scholar
Liu, W., Fox, J. E. D., and Xu, Z. (2002). Nutrient fluxes in bulk precipitation, throughfall and stemflow in montane subtropical moist forest on Ailao Mountain in Yunnan, south-west China. Journal of Tropical Ecology 18: 527–541.CrossRefGoogle Scholar
Liu, W. J., Liu, W. Y., Li, P. J., et al. (2007). Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agricultural and Forest Meteorology 143: 80–91.CrossRefGoogle Scholar
Long, A. (1995). The importance of tropical montane cloud forests for endemic and threatened birds. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 79–106. New York: Springer-Verlag.CrossRefGoogle Scholar
Lugo, A. E., and Scatena, F. N. (1992). Epiphytes and climate change in the Caribbean: a proposal. Selbyana 13: 123–130.Google Scholar
Lundgren, L., and Lundgren, B. (1979). Rainfall, interception and evaporation in the Mazumbai forest reserve, West Usambara Mts., Tanzania and their importance in the assessment of land potential. Geografiska Annaler 61: 157–178.CrossRefGoogle Scholar
Luping, M., Chin, N., and Dingley, E. R. (eds.) (1978). Kinabalu, Summit of Borneo. Kota Kinabalu, Sabah, Malaysia: The Sabah Society.Google Scholar
Luteyn, J. L. (1989). Speciation and diversity of Ericaceae in neotropical montane vegetation. In Tropical Forests: Botanical Dynamics, Speciation and Diversity, eds. Holm-Nielsen, L. B., Nielsen, I., and Balslev, H., pp. 297–310. London: Academic Press.CrossRefGoogle Scholar
Lyford, W. H. (1969). The ecology of an elfin forest in Puerto Rico. VII. Soil, root, and earthworm relationships. Journal of the Arnold Arboretum 50: 210–224.Google Scholar
Mamanteo, B. P., and Veracion, V. P. (1985). Measurements of fog drip, throughfall and stemflow in the mossy and Benguet pine (Pinus kesiya Royle ex Gordon) forests in the upper Agno river basin. Sylvatrop (Philippines Forestry Research Journal) 10: 271–282.Google Scholar
Mangen, J. M. (1993). Ecology and vegetation of Mt Trikora, New Guinea (Irian Jaya/Indonesia). Travaux Scientifiques du Musée National d'Histoire Naturelle de Luxembourg 21: 1–216.Google Scholar
Mann, M. E., Emanuel, K. A., Holland, G. L., and Webster, P. J. (2007). Atlantic tropical cyclones revisited. Eos, Transactions of the American Geophysical Union 88(36): 349–350.CrossRefGoogle Scholar
Marrs, R., Proctor, J., Heaney, A., and Mountford, M. (1988). Changes in soil nitrogen mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. Journal of Ecology 76: 466–482.CrossRefGoogle Scholar
Martínez, A., Mahecha, M. D., Lischeid, G., and Beck, E. (2008). Succession stages of vegetation regeneration: secondary tropical mountain forests. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 425–431. Berlin: Springer-Verlag.Google Scholar
McBride, J., Kepert, J., Chan, J., et al. (2006). Statement on Tropical Cyclones and Climate Change, WMO/CAS Tropical Meteorological Research Program, Steering Committee for Project TC-2. Available at www.bom.gov.au/info/CAS-statement.pdf.Google Scholar
McCain, C. M. (2005). Elevational gradients in diversity of small mammals. Ecology 86: 366–372.CrossRefGoogle Scholar
McJannet, D., Wallace, J. S., and Reddell, P. (2007a). Precipitation interception in Australian tropical rainforests. I. Measurement of stemflow, throughfall and cloud interception. Hydrological Processes 21: 1692–1702.CrossRefGoogle Scholar
McJannet, D., Wallace, J., and Reddell, P. (2007b). Precipitation interception in Australian tropical rainforests. II. Altitudinal gradients of cloud interception, stemflow, throughfall and interception. Hydrological Processes 21: 1703–1718.CrossRefGoogle Scholar
McJannet, D. L., Fitch, P. G., Disher, M. G., and Wallace, J. S. (2007c). Measurements of transpiration in four tropical rainforest types of north Queensland, Australia. Hydrological Processes 21: 3549–3564.CrossRefGoogle Scholar
McJannet, D. L., Wallace, J. S., Fitch, P., Disher, M., and Reddell, P. (2007d). Water budgets of tropical rainforests in northern Queensland, Australia. Hydrological Processes 21: 3473–3483.CrossRefGoogle Scholar
McKinnon, K., Hatta, G., Halim, H., and Mangalik, A. (1996). The Ecology of Kalimantan: Indonesian Borneo, The Ecology of Indonesia Series, Vol. III. Hong Kong, China: Periplus Editions.Google Scholar
McNeely, J. A., and Scherr, S. J. (2003). Ecoagriculture: Strategies to Feed the World and Save Wild Biodiversity. Washington, DC: Island Press.Google Scholar
Mosandl, R., and Günter, S. (2008). Sustainable management of tropical mountain forests in Ecuador. In The Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, eds. Gradstein, S. R., Homeier, J., and Gansert, D., pp. 177–193. Göttingen, Germany: Göttingen Centre for Biodiversity and Ecology.Google Scholar
Mosandl, R., Günter, S., Stimm, B., and Weber, M. (2008). Ecuador suffers the highest deforestation rate in South America. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 37–40. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Moser, G., Hertel, D., and Leuschner, C h. (2007). Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10: 924–935.CrossRefGoogle Scholar
Moser, G., Röderstein, M., Soethe, N., Hertel, D., and Leuschner, C h. (2008). Altitudinal changes in stand structure and biomass allocation of tropical mountain forest in relation to microclimate and soil chemistry. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 229–242. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Motzer, , T. (2005). Micrometeorological aspects of a tropical mountain forest. Agricultural and Forest Meteorology 135: 230–240.CrossRefGoogle Scholar
Mulligan, M. (2006a). Global Gridded 1km TRMM Rainfall Climatology and Derivatives, Version 1.0. Database available at www.ambiotek.com/1kmrainfall.Google Scholar
Mulligan, M. (2006b). MODIS MOD35 Pan-Tropical Cloud Climatology, Version 1, September 2006. Available at www.ambiotek.com/clouds.Google Scholar
Mulligan, M., and Burke, S. M. (2005a). Global Cloud Forests and Environmental Change in a Hydrological Context, Final Report of DFID FRP Project ZF0216. Available at www.ambiotek.com/cloud forests.Google Scholar
Mulligan, M., and Burke, S. M. (2005b). FIESTA: Fog Interception for the Enhancement of Streamflow in Tropical Areas, Appendix 4a to Final Technical Report of DFID-FRP Project no. R7991. Available at www.ambiotek.com/fiesta).Google Scholar
Muñoz-Piña, C., Guevara, A., Torres, J. M., and Braña, J. (2008). Paying for the hydrological services of Mexico's forests: analysis, negotiations and results. Ecological Economics 65: 725–736.CrossRefGoogle Scholar
Muñoz-Villers, L. E., (2008). Efecto del cambio en el uso de suelo sobre la dinámica hidrológica y calidad de agua en el trópico húmedo del centro de Veracruz, México. Ph.D. thesis, Autonomous University of Mexico, Mexico City.Google Scholar
Mutke, J., and Barthlott, W. (2005). Patterns of vascular plant diversity at continental to global scales. Biologiske Skrifter 55: 521–537.Google Scholar
Myers, N., Mittermeier, R., Mittermeier, C. G., Fonseca, G. A. B. da, and Kent, J.. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853–858.CrossRefGoogle ScholarPubMed
Nadkarni, N. M. (1984). Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16: 249–256.CrossRefGoogle Scholar
Nadkarni, N. M., and Solano, R. (2002). Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131: 580–584.CrossRefGoogle Scholar
Nadkarni, N., Matelson, T. J., and Haber, W. A. (1995). Structural characteristics and floristic composition of a neotropical cloud forest, Monteverde, Costa Rica. Journal of Tropical Ecology 11: 481–494.CrossRefGoogle Scholar
Nair, U. S., Asefi, S., Welch, R. M., et al. (2008). Biogeography of tropical montane cloud forests. II. Mapping of orographic cloud immersion. Journal of Applied Meteorology and Climatology 47: 2183–2197.CrossRefGoogle Scholar
Nespor, V., and Sevruk, B. (1999). Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. Journal of Atmospheric and Oceanic Technology 16: 450–464.2.0.CO;2>CrossRefGoogle Scholar
New, M., Hulme, M., and Jones, P. D. (2000). Global Monthly Climatology for the Twentieth Century. Oak Ridge, TN: Oak Ridge National Laboratory Distributed Active Archive Center. Data-set available at www.daac.ornl.gov.Google Scholar
Newmark, W. D., and Senzota, R. B. M. (2003). Power to detect trends in ecological indicators in the East Usambara Mountains, Tanzania. African Journal of Ecology 41: 294–298.CrossRefGoogle Scholar
Nieder, J., Prosperí, J., and Michaloud, G. (2001). Epiphytes and their contribution to canopy diversity. Plant Ecology 153: 51–63.CrossRefGoogle Scholar
Northup, R., Yu, Z., Dahlgren, R. A., and Vogt, K. A. (1995). Polyphenol control of nitrogen release from pine litter. Nature 377: 227–229.CrossRefGoogle Scholar
Northup, R., Dahlgren, R. A., and McColl, J. G. (1998). Polyphenols as regulators of plant-litter-soil interactions: a positive feedback. Biogeochemistry 42: 189–220.CrossRefGoogle Scholar
Olander, L. P., Scatena, F. N., and Silver, W. L. (1998). Impacts of disturbance initiated by road construction in a subtropical cloud forest in the Luquillo Experimental Forest, Puerto Rico. Forest Ecology and Management 109: 33–49.CrossRefGoogle Scholar
Olson, D. M., and Dinerstein, E. (2002). The Global 200: Ecoregions for global conservation. Annals of the Missouri Botanical Garden 89: 199–224.CrossRefGoogle Scholar
Olson, D. M, Dinerstein, E., Wikramanayake, E. D., et al. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51:933–938. Also available at www.worldwildlife.org/science/data/terreco.cfm.CrossRefGoogle Scholar
O'Neill, J. P., Lane, D. F., Kratter, A. W., Capparella, A. P., and Joo, C. F. (2000). A striking new species of barbet (Capitoninae: Capito) from the eastern Andes of Peru. The Auk 117: 569–577.CrossRefGoogle Scholar
Pagiola, S. (2002). Paying for water services in Central America: learning from Costa Rica. In Selling Forest Environmental Services: Market-Based Mechanisms for Conservation and Development, eds. Pagiola, S., Bishop, J., and Landell-Mills, N., pp. 36–60. London: Earthscan.Google Scholar
Pagiola, S. (2008). Payments for environmental services in Costa Rica. Ecological Economics 65: 712–724.CrossRefGoogle Scholar
Parrotta, J. A., Turnbull, J. W., and Jones, N. (1997). Catalyzing native forest regeneration on degraded tropical lands. Forest Ecology and Management 99: 1–7.CrossRefGoogle Scholar
Paulsch, A., Schneider, R., and Hartig, K. (2001). Land-use induced vegetation structure in a montane region of southern Ecuador. Die Erde 132: 93–102.Google Scholar
Paulsch, A., Piechowski, D., and Müller-Hohenstein, K. (2008). Forest structure along an altitudinal gradient in Southern Ecuador. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 113–122. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Pineda, E., and Halffter, G. (2004). Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biological Conservation 117: 499–508.CrossRefGoogle Scholar
Pócs, T. (1980). The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania, East Africa). Acta Botanica Academiae Scientiarum Hungariae 26: 143–167.Google Scholar
Pohle, P. (2008). Indigenous land use practices and biodiversity conservation in southern Ecuador. In The Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, ed. Gradstein, S. R., Homeier, J., and Gansert, D., pp. 163–176. Göttingen, Germany: Göttingen Centre for Biodiversity and Ecology.Google Scholar
Ponette-González, A. G., Weathers, K. C., and Curran, L. M. (2009). Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology, doi:10.1111/j.1365–2486.2009.01985.x.Google Scholar
Porras, I. (2008). Forests, flows and markets for watershed environmental services: evidence from Costa Rica and Panama. Ph.D. thesis, University of Newcastle-upon-Tyne, Newcastle, UK.Google Scholar
Porras, I. T., Grieg-Gran, M., and Neves, N. (2008). All That Glitters: A Review of Payments for Watershed Services in Developing Countries. London: International Institute for Environment and Development.Google Scholar
Pounds, J. A. (2000). Amphibians and reptiles. In Monteverde: Ecology and Conservation of a Tropical Cloud Forest, eds. Nadkarni, N. M. and Wheelwright, N. T., pp. 149–177. Oxford, UK: Oxford University Press.Google Scholar
Pounds, J. A., and Crump, M. L. (1994). Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conservation Biology 8: 72–85.CrossRefGoogle Scholar
Pounds, J. A., Fogden, M. P. L., and Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature 398: 611–615.CrossRefGoogle Scholar
Pounds, J. A., Bustamante, M. R., Coloma, L. A., et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161–167.CrossRefGoogle ScholarPubMed
Prada, S., Menezes de Sequeiro, M., Figueira, C., and Silva, M. Oliveira da (2009). Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal). Agricultural and Forest Meteorology 149: 1179–1187.CrossRefGoogle Scholar
Prance, G. T. (ed.) (1982). Biological Diversification in the Tropics. New York: Columbia University Press.
Proctor, J., Lee, Y. F., Langley, A. M., Munro, W. R. C., and Nelson, T. (1988). Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure, and floristics. Journal of Ecology 76: 320–340.CrossRefGoogle Scholar
Raich, J. W. (1998). Aboveground productivity and soil respiration in three Hawaiian rainforests. Forest Ecology and Management 107: 309–318.CrossRefGoogle Scholar
Raich, J. W., Russell, A. E., and Vitousek, P. M. (1997). Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i. Ecology 78: 707–721.Google Scholar
Ray, D. K., Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke, R. A. (2006). Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of orographic cloud formation to deforestation in the plains. Journal of Geophysical Research 111: D02108, doi:10.1029/2005JD006096.CrossRefGoogle Scholar
Ray, D. K., Pielke, R. A., Nair, U. S., Welch, R. M., and Lawton, R. O. (2009). Importance of land use versus atmospheric information verified from cloud simulations from a frontier region in Costa Rican. Journal of Geophysical Research 114: D08113, doi:10.1029/2007JD009565.CrossRefGoogle Scholar
Rhodes, A. L., Guswa, A. J., and Newell, S. E. (2006). Seasonal variation in the stable isotopic composition of precipitation in the tropical montane forests of Monteverde, Costa Rica. Water Resources Research 42, W11402, doi:10.1029/2005WR004535.CrossRefGoogle Scholar
Richards, P. W. (1996). The Tropical Rain Forest, 2nd edn. Cambridge, UK: Cambridge University Press.Google Scholar
Richardson, B. A., Richardson, M. J., Scatena, F. N., and McDowell, W. H. (2000). Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Tropical Ecology 16: 167–188.CrossRefGoogle Scholar
Richter, M. (2008). Tropical mountain forests: distribution and general features. In The Tropical Mountain Forest: Patterns and Processes in a Biodiversity hotspot, eds. Gradstein, S. R., Homeier, J., and Gansert, D., pp. 7–24. Göttingen, Germany: Göttingen Centre for Biodiversity and Ecology.Google Scholar
Rickets, T. H., Daily, G. C., Ehrlich, P. R., and Michener, C. D. (2004). Economic value of tropical forest to coffee production. Proceedings of the National Academy of Sciences USA 101: 12 579–12 582.CrossRefGoogle Scholar
Ridgely, R. S., Allnutt, T. F., Brooks, T., et al. (2007). Digital Distribution Maps of the Birds of the Western Hemisphere, Version 3.0. Arlington, VA: NatureServe. Also available at www.natureserve.org/getData/birdMaps.jsp.Google Scholar
Roberts, J. M., Gash, J. H. C., Tani, M., and Bruijnzeel, L. A. (2005). Controls on evaporation in lowland tropical rainforest. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 287–313. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Röderstein, M., Hertel, D., and Leuschner, Ch. (2005). Above- and below-ground litter production in three tropical montane forests in southern Ecuador. Journal of Tropical Ecology 21: 483–492.CrossRefGoogle Scholar
Rodgers, W. A., and Homewood, K. M. (1982). Species richness and endemism in the Usambara mountain forests, Tanzania. Biological Journal of the Linnean Society 18: 197–242.CrossRefGoogle Scholar
Rodriguez-Zuñiga, J. M. (2003). Paying for forest environmental services: the Costa Rican experience. Unasylva 212(54): 31–33.Google Scholar
Røhr, P. C. (2003). A hydrological study concerning the southern slopes of Mt. Kilimanjaro, Tanzania. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar
Rojas, M., and Aylward, B. (2003). What Are We Learning from Experiences with Markets for Environmental Services in Costa Rica? A Review and Critique of the Literature. London: International Institute for Environment and Development.Google Scholar
Rollenbeck, R., Bendix, J., Fabian, P., et al. (2007). Comparison of different techniques for the measurement of precipitation in tropical montane rain forest regions. Journal of Atmospheric and Oceanic Technology 24: 156–168.CrossRefGoogle Scholar
Rovito, S. M., Parra-Olea, G., Vásquez-Alamazán, C. R., Papenfuss, T. J., and Wake, D. B. (2009). Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. Proceedings of the National Academy of Sciences USA 106: 3231–3236.CrossRefGoogle ScholarPubMed
Rüger, N., Williams-Linera, G., Kissling, W. D., and Huth, A. (2008). Long-term impacts of fuelwood extraction on a tropical montane cloud forest. Ecosystems 11: 868–881.CrossRefGoogle Scholar
Rzedowski, J. (1996). Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botanica Mexicana 35: 25–44.CrossRefGoogle Scholar
Salaman, P., Donegan, T. M., Mulligan, M., et al. (2003). A new species of wood-wren (Troglodytidae: Henicorhina) from the western Andes of Colombia. Ornitología Colombiana 1: 4–21.Google Scholar
Salzmann, U. (2000). Are modern savannas degraded forests? A Holocene pollen record from the Sudanian vegetation zone of NE Nigeria. Vegetation History and Archaeobotany 9: 1–15.CrossRefGoogle Scholar
Santiago, L. S., Goldstein, G., Meinzer, F. C., Fownes, J., and Müeller-Dombois, D.. (2000). Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiology 20: 673–681.CrossRefGoogle Scholar
Sarmiento, F. (1997). Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environmental Conservation 24: 14–23.CrossRefGoogle Scholar
Scatena, F. N. (1995). The management of Luquillo cloud forest ecosystems: irreversible decisions in a non-substitutable ecosystem. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 296–308. New York: Springer-Verlag.CrossRefGoogle Scholar
Scatena, F. N. (1998). An assessment of climatic change in the Luquillo Mountains of Puerto Rico. In American Water Resources Association TPS-98–2: 193–198.
Scatena, F. N., Planos-Gutierrez, E. O., and Schellekens, J. (2005). Natural disturbances and the hydrology of humid tropical forests. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 489–512. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
,SCBD (Secretariat of the Convention on Biological Diversity) (2003a). Status and trends of, and threats to, mountain biodiversity and marine, coastal and inland water ecosystems. Abstracts of Poster Presentations at the 8th Meeting of the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA-8) of the Convention on Biological Diversity, CBD Technical Series No. 8. Montréal, Canada: SCBD. Also available at www.cbd.int/doc/publications/cbd-ts-08.pdf.Google Scholar
,SCBD (Secretariat of the Convention on Biological Diversity). (2003b). Status and Trends of, and Threats to, Mountain Biological Diversity Document No. UNEP/CBD/SBSTTA/8/5. Montréal, Canada: SCBD. Also available at www.cbd.int/doc/meetings/sbstta/sbstta-08/official/sbstta-08-05-en.pdf.Google Scholar
,SCBD (Secretariat of the Convention on Biological Diversity) (2003c). Measures Taken for the Conservation and Sustainable Use of Mountain Biological Diversity, Document No. UNEP/CBD/SBSTTA/8/6. Montréal, Canada: SCBD. Also available at wwww.cbd.int/doc/meetings/sbstta/sbstta-08/official/sbstta-08-06-en.pdf.Google Scholar
,SCBD (Secretariat of the Convention on Biological Diversity) (2004). Programme of Work on Mountain Biological Diversity. Montréal, Canada: SCBD. Also available at www.cbd.int/mountain/pow.shtml.Google Scholar
Schawe, M., Glatzel, S., and Gerold, G. (2007). Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: podzolization vs. hydromorphy. Catena 69: 83–90.CrossRefGoogle Scholar
Schellekens, J. (2006). CQ-FLOW: A Distributed Hydrological Model for the Prediction of Impacts of Land-Cover Change, with Special Reference to the Rio Chiquito Catchment, Northwest Costa Rica, Annex 3 to Final Technical Report DFID-FRP Project No. R7991. Amsterdam, the Netherlands: Vrije Universiteit. Also available at (www.geo.vu.nl/?fiesta/.Google Scholar
Schrumpf, M. (2004). Biogeochemical investigations in old growth and disturbed forest sites at Mount Kilimanjaro. Ph.D. thesis, University of Bayreuth, Bayreuth, Germany.Google Scholar
Schrumpf, M., Guggenberger, G., Valarezo, C., and Zech, W. (2001). Tropical montane rain forest soils: development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Die Erde 132: 43–59.Google Scholar
Schuur, E. (2001). The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems 4: 259–273.CrossRefGoogle Scholar
Schuur, E., and Matson, P. (2001). Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128: 431–442.CrossRefGoogle ScholarPubMed
Schuur, E. A. G., Chadwick, O. A., and Matson, P. A. (2001). Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 82: 3182–3196.CrossRefGoogle Scholar
Scott, N. J. (1976). The abundance and diversity of the herpetofaunas of tropical forest litter. Biotropica 8: 41–58.CrossRefGoogle Scholar
Setzer, M. C., Moriarity, D. M., Lawton, R. O., et al. (2003). Phytomedicinal potential of tropical cloudforest plants. Revista de Biología Tropical 51: 647–674.Google ScholarPubMed
Sharon, D. (1980). Distribution of hydrologically effective rainfall incident on sloping ground. Journal of Hydrology 46: 165–188.CrossRefGoogle Scholar
Sheil, D., and Lawrence, A. (2004). Tropical biologists, local people and conservation: new opportunities for collaboration. Trends in Ecology and Evolution 19: 634–638.CrossRefGoogle ScholarPubMed
Shukor, M. N. (2001). Elevational diversity patterns of small mammals on Mount Kinabalu, Sabah, Malaysia. Global Ecology and Biogeography 10: 41–62.Google Scholar
Shuttleworth, W. J. (1988). Evaporation from Amazonian rain forest. Philosophical Transactions of the Royal Society of London Series B 233: 321–346.Google Scholar
Sidle, R. C., Ziegler, A. D., Negishi, J. N., et al. (2006). Erosion processes in steep terrain: truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management 224: 199–225.CrossRefGoogle Scholar
Silver, W. L., Lugo, A. E., and Keller, M. (1999). Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44: 301–328.CrossRefGoogle Scholar
Soethe, N., Lehmann, J., and Engels, C. (2006). The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest. Plant and Soil 286: 287–299.CrossRefGoogle Scholar
Soethe, N., Lehmann, J., and Engels, C. (2007). Carbon and nutrient stocks in roots of forests at different altitudes in the Ecuadorian Andes. Journal of Tropical Ecology 23: 319–328.CrossRefGoogle Scholar
Soethe, N., Wilcke, W., Homeier, J., Lehmann, J., and Engels, C. (2008a). Plant growth along the altitudinal gradient: role of plant nutritional status, fine root activity, and soil properties. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 259–266. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Soethe, N., Lehmann, J., and Engels, C. (2008b). Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24: 397–406.CrossRefGoogle Scholar
Spehn, E. M., Liberman, M., and Körner, C h. (eds.) (2006). Land Use Change and Mountain Biodiversity. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Stadtmüller, T. (1987). Cloud Forests in the Humid Tropics: A Bibliographic Review. Turrialba, Costa Rica: CATIE, and Tokyo: United Nations University. Also available at www.unu.edu/unupress/unupbooks/80670e/80670E00.htm.Google Scholar
Stadtmüller, T., and Agudelo, N.. (1990). Amount and variability of cloud moisture input in a tropical cloud forest. International Association of Hydrological Sciences Publication 193: 25–32.Google Scholar
Steinhardt, U. (1979). Untersuchungen über den Wasser- und Nährstoffhaushalt eines andinen Wolkenwaldes in Venezuela. Göttinger Bodenkundliche Berichte 56: 1–185.Google Scholar
Still, C. J., Foster, P. N., and Schneider, H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature 398: 608–610.CrossRefGoogle Scholar
Stimm, B., Beck, E., Günter, S., et al. (2008). Reforestation of abandoned pastures: seed ecology of native species and production of indigenous plant material. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 433–445. Berlin: Springer-Verlag.Google Scholar
Stuart, S., Chanson, J. S., Cox, N. A., et al. (2004). Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783–1786.CrossRefGoogle ScholarPubMed
Suding, K. N., Gross, L. G., and Houseman, G. R. (2004). Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution 19: 46–53.CrossRefGoogle ScholarPubMed
Sugden, A. M., and Robins, R. J. (1979). Aspects of the ecology of vascular epiphytes in Colombian cloud forests. I. The distribution of the epiphytic flora. Biotropica 11: 173–188.CrossRefGoogle Scholar
Sutherland, W. J., Adams, W. M., Aronson, R. B., et al. (2009). One hundred questions of importance to the conservation of global biological diversity. Conservation Biology 23: 557–567.CrossRefGoogle ScholarPubMed
Tanaka, K., Takizawa, H., Tanaka, N., et al. (2003). Transpiration peak over a hill evergreen forest in northern Thailand in the late dry season: assessing the seasonal changes in evapotranspiration using a multilayer model. Journal of Geophysical Research108, D17, 4533, doi:10.1029/2002JD003028.Google Scholar
Tanaka, N., Tantasirin, C., Kuraji, K., Suzuki, M., and Tangtham, N. (2005). Inter-annual variation in rainfall interception at a hill evergreen forest in northern Thailand. Bulletin of the Tokyo University Forest 113: 11–44.Google Scholar
Tani, M., Rahim Nik, A., Yasuda, Y., et al. (2003). Long-term estimation of evapotranspiration from a tropical rain forest in Peninsular Malaysia. International Association of Hydrological Sciences Publication 280: 267–274.Google Scholar
Tanner, E. V. J. (1980). Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology 68: 573–588.CrossRefGoogle Scholar
Tanner, E. V. J., Vitousek, P., and Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79: 10–22.CrossRefGoogle Scholar
Ten Hoopen, G. M., and Kappelle, M. (2006). Soil seed bank size and composition in disturbed and old growth montane oak forests in Costa Rica. In: Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 299–308. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Terborgh, J. (1977). Bird species diversity on an Andean elevational gradient. Ecology 58: 1007–1019.CrossRefGoogle Scholar
Thang, H. C., and Chappell, N. (2005). Minimizing the hydrological impact of forest harvesting in Malaysia's rainforests. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 852–865. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Tie, Y. L., Baille, I. C., Phang, C. M. S., and Lim, C. P. (1979). Soils of Gunung Mulu National Park. Kuching, Sarawak, Malaysia: Department of Agriculture.Google Scholar
Timm, R. M., and LaVal, R. K. (2000). Mammals. In Monteverde: Ecology and Conservation of a Tropical Cloud Forest, eds. Nadkarni, N. M. and Wheelwright, N. T., pp. 223–244 and 553–557. Oxford, UK: Oxford University Press.Google Scholar
Tobón, C. (2009). Los bosques andinos y el agua, Serie Investigación y Sistematización No. 4. Quito, Ecuador: Programa Regional ECOBONA–INTERCOOPERATION–CONDESAN.Google Scholar
Turner, I. M. (1994). Sclerophylly: primarily protective?Functional Ecology 8: 669–675.CrossRefGoogle Scholar
Turton, S. M. (1990). Light environments within tropical rainforest, Mt. Bellenden Ker, North Queensland. Austral Ecology 15: 35–42.CrossRefGoogle Scholar
Hammen, T. (1974). The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1: 3–26.CrossRefGoogle Scholar
Hammen, T., and Hooghiemstra, H. (2001). Historia y paleoecología de los bosques montanos andinos neotropicales. In Bosques nublados del Neotrópico, eds. Kappelle, M. and Brown, A. D., pp. 63–84. Santo Domingo de Heredia, Costa Rica: Editorial INBio and IUCN.Google Scholar
Molen, M. K. (2002). Meteorological impacts of land use change in the maritime tropics. Ph.D. thesis, VU University Amsterdam, Amsterdam, the Netherlands. Also available at (www.falw.vu.nl/images_upload/702F8F36-45DC-488E-B2C550BFDCAC2B9D.pdf.Google Scholar
Molen, M. K., Dolman, A. J., Waterloo, M. J., and Bruijnzeel, L. A. (2006). Climate is affected more by maritime than by continental land use change: a multiple-scale analysis. Global and Planetary Change 54: 128–149.Google Scholar
Dunné, H. J. F., and Kappelle, M. (1998). Biomass–diversity relations of epiphytic bryophytes on small Quercus copeyensis stems in a Costa Rican montane cloud forest. Revista de Biología Tropical 46: 35–42.Google Scholar
Reuler, H. (1987). Soil studies in the Bukit Raya nature reserve. In Report of the 1982–1983 Bukit Raya Expedition, ed. Nooteboom, H. P., pp. 7–23. Leiden, the Netherlands: Rijksherbarium.Google Scholar
Steenis, C. G. G. J. (1972). The Mountain Flora of Java. Leiden, the Netherlands: E.J. Brill.Google Scholar
Vázquez-García, J. A. (1995). Cloud forest archipelagos: preservation of fragmented montane ecosystems in tropical America. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 314–332. New York: Springer-Verlag.Google Scholar
Veneklaas, E. J., and Ek, R. (1990). Rainfall interception in two tropical montane rain forests, Colombia. Hydrological Processes 4: 311–326.CrossRefGoogle Scholar
Veneklaas, E. J., Zagt, R. J., Leerdam, A., et al. (1990). Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89: 183–192.CrossRefGoogle Scholar
Vernimmen, R. R. E., Bruijnzeel, L. A., Romdoni, D., and Proctor, J. (2007). Rainfall interception in three contrasting rain forest types in Central Kalimantan, Indonesia. Journal of Hydrology 340: 217–232.CrossRefGoogle Scholar
Vis, M. (1986). Interception, drop size distributions and rainfall kinetic energy in four Colombian forest ecosystems. Earth Surface Processes and Landforms 11: 591–603.CrossRefGoogle Scholar
Vogelmann, H. W. (1973). Fog precipitation in the cloud forests of Eastern Mexico. BioScience 23: 96–100.CrossRefGoogle Scholar
Wadsworth, F. H., and Bonnet, J. A. (1951). Soil as a factor in the occurrence of two types of montane forest in Puerto Rico. Caribbean Forester 12: 67–70.Google Scholar
Waide, R. B., Zimmerman, J. K., and Scatena, F. N. (1998). Controls of primary productivity: lessons from the Luquillo Mountains in Puerto Rico. Ecology 79: 31–37.CrossRefGoogle Scholar
Walmsley, J. L., Schemenauer, R. S., and Bridgman, H. A. (1996). A method for estimating the hydrologic input from fog in mountainous terrain. Journal of Applied Meteorology 35: 2237–2249.2.0.CO;2>CrossRefGoogle Scholar
Walmsley, J.L., Burrows, W.R., and Schemenauer, R.S. (1999). The use of routine observations to calculate liquid water content in summertime high-elevation fog. Journal of Applied Meteorology 38 : 369–384.2.0.CO;2>CrossRefGoogle Scholar
Watson, D. M, and Townsend Peterson, A. (1999). Determinants of diversity in a naturally fragmented landscape: humid montane forest avifaunas of Mesoamerica. Ecography 22: 582–589.CrossRefGoogle Scholar
,WDPA Consortium (2004). World database on Protected Areas 2004. Gland, Switzerland: World Conservation Union (IUCN), and Cambridge, UK: UNEP–World Conservation Monitoring Centre. (Source for this data-set was the Global Land Cover Facility.)Google Scholar
Weaver, P. L. (1972). Cloud moisture interception in the Luquillo mountains of Puerto Rico. Caribbean Journal of Science 12: 129–144.Google Scholar
Weaver, P. L. (1986). Hurricane damage and recovery in the montane forests of Puerto Rico. Caribbean Journal of Science 15: 21–30.Google Scholar
Weaver, P. L. (1990). Succession in the elfin woodland of the Luquillo Mountains of Puerto Rico. Biotropica 22: 83–89.CrossRefGoogle Scholar
Weaver, P. L. (1999). Impacts of Hurricane Hugo on the dwarf cloud forest of Puerto Rico's Luquillo Mountains. Caribbean Journal of Science 35: 101–111.Google Scholar
Weaver, P. L., and Murphy, P. G (1990). Forest structure and productivity in Puerto Rico's Luquillo Mountains. Biotropica 22: 69–82.CrossRefGoogle Scholar
Weber, M., Günter, S., Aguirre, N., Stimm, B., and Mosandl, R. (2008). Reforestation of abandoned pastures: silvicultural means to accelerate forest recovery and biodiversity. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 447–457. Berlin: Springer-Verlag.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R. (2005). Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309: 1844–1846.CrossRefGoogle Scholar
Welch, R. M., Asefi, S., Zeng, J., et al. (2008). Biogeography of tropical montane cloud forests. I. Remote sensing of cloud base heights. Journal of Applied Meterology and Climatology 47: 960–975.CrossRefGoogle Scholar
Whitmore, T. C. (1989). Tropicasl forest nutrients, where do we stand? A tour de horizon. In Mineral Nutrients in Tropical Forest and Savanna Ecosystems, ed. Proctor, J., pp. 1–13. Oxford, UK: Blackwell Scientific.Google Scholar
Williams, J. W., Jackson, S. T., and Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences USA 104: 5738–5742.CrossRefGoogle ScholarPubMed
Williams, S., Bolitho, E., and Fox, S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings of the Royal Society of London Series B 270: 1887–1893.CrossRefGoogle ScholarPubMed
Williams-Linera, G. (2002). Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation 11: 1825–1843.CrossRefGoogle Scholar
Williams-Linera, G., Lopez, A. M., and Muñiz, M. A. (2005). Complementariedad y patrones de anidamiento de especies de árboles en el paisaje de bosque de niebla del centro deVeracruz (México). In Sobre diversidad biológica: el significado de las diversidades alfa, beta y gamma, eds. Halffter, G., Soberón, J., Koleff, P., and Melic, A., pp. 153–164. Zaragoza, Mexico: m3m-Monografías Tercer Milenio.Google Scholar
Wilms, J. J. A. M., and Kappelle, M. (2006). Frugivorous birds and seed dispersal in disturbed and old growth montane oak forests in Costa Rica. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 309–324. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Wilson, L. D., and McCranie, J. R. (2004). The conservation status of the herpetofauna of Honduras. Amphibian and Reptile Conservation 3: 6–33.Google ScholarPubMed
Wolf, J. H. D. (1993). Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden 80: 928–960.CrossRefGoogle Scholar
Wolf, J. H. D. (1994). Factors controlling the distribution of vascular and nonvascular epiphytes in the northern Andes. Vegetatio 112: 15–28.CrossRefGoogle Scholar
Wolf, J. H. D. (1995). Non vascular epiphyte diversity patterns in the canopy of an Upper Montane Rain Forest, Central Cordillera, Colombia. Selbyana 16: 185–195.Google Scholar
Wolf, J. H. D. (2005). The response of epiphytes to anthropogenic disturbance of pine–oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management 212: 376–393.CrossRefGoogle Scholar
Wolf, J. H. D., and Flamenco-Sandoval, A. (2006). Vascular epiphytes and their potential as a conservation tool in pine-oak forests of Chiapas, Mexico. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 375–391. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Wolf, J. H. D., and Konings, C. J. F. (2001). Toward the sustainable harvesting of epiphytic bromeliads: a pilot study from the highlands of Chiapas, Mexico. Biological Conservation 101: 23–31.CrossRefGoogle Scholar
Wu, W., Hall, C. A., Scatena, F. N., and Quackenbush, L. J. (2006). Spatial modeling of evapotranspiration in the Luquillo Experimental Forest of Puerto Rico using remotely-sensed data. Journal of Hydrology 328: 733–752.CrossRefGoogle Scholar
Yang, D., Goodison, B. E., Ishida, S., and Benson, C. S. (1998). Adjustment of daily precipitation data at 10 climate stations in Alaska: application of World Meteorological Organization intercomparison results. Water Resources Research 34: 241–256.CrossRefGoogle Scholar
Yin, X. W., and Arp, P. A. (1994). Fog contributions to the water budget of forested watersheds in the Canadian Maritime Provinces: a generalized algorithm for low elevations. Atmosphere–Ocean 32: 553–566.CrossRefGoogle Scholar
Young, B. E., and McDonald, D. B (2000). Birds. In Monteverde: Ecology and Conservation of a Tropical Cloud Forest, eds. Nadkarni, N. M. and Wheelwright, N. T., pp. 179–222. Oxford, UK: Oxford University Press.Google Scholar
Zadroga, F. (1981). The hydrological importance of a montane cloud forest area of Costa Rica. In Tropical Agricultural Hydrology, eds. Lal, R. and Russell, E. W., pp. 59–73. New York: John Wiley.Google Scholar
Zimmermann, B., and Elsenbeer, H. (2008). Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance. Journal of Hydrology 361: 78–95.CrossRefGoogle Scholar
Zimmerman, J. K., Pascarella, J. B., and Aide, T. M. (2000). Barriers to forest regeneration in an abandoned pasture in Puerto Rico. Restoration Ecology 8: 350–360.CrossRefGoogle Scholar
Zotz, G. (1999). Altitudinal changes in diversity and abundance of non-vascular epiphytes in the tropics: an ecophysiological explanation. Selbyana 20: 256–260.Google Scholar
Zotz, G., and Bader, M. Y. (2009). Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Progress in Botany 70: 147–170.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×