Published online by Cambridge University Press: 05 June 2014
Abstract. We recognize Alan Turing's work in the foundations of numerical computation (in particular, his 1948 paper “Rounding-Off Errors in Matrix Processes”), its influence in modern complexity theory, and how it helps provide a unifying concept for the two major traditions of the theory of computation.
§1. Introduction. The two major traditions of the theory of computation, each staking claim to similar motivations and aspirations, have for the most part run a parallel non-intersecting course. On one hand, we have the tradition arising from logic and computer science addressing problems with more recent origins, using tools of combinatorics and discrete mathematics. On the other hand, we have numerical analysis and scientific computation emanating from the classical tradition of equation solving and the continuous mathematics of calculus. Both traditions are motivated by a desire to understand the essence of computation, of algorithm; both aspire to discover useful, even profound, consequences.
While the logic and computer science communities are keenly aware of Alan Turing's seminal role in the former (discrete) tradition of the theory of computation, most remain unaware of Alan Turing's role in the latter (continuous) tradition, this notwithstanding the many references to Turing in the modern numerical analysis/computational mathematics literature, e.g., [Bur 10, Hig02, Kah66, TB97, Wil71]. These references are not to recursive/computable analysis (suggested in Turing's seminal 1936 paper), usually cited by logicians and computer scientists, but rather to the fundamental role that the notion of “condition” (introduced in Turing's seminal 1948 paper) plays in real computation and complexity.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.