Published online by Cambridge University Press: 05 June 2014
§1. Introduction. In recent years there has emerged the study of discrete computational models which are allowed to act transfinitely. By ‘discrete’ we mean that the machine models considered are not analogue machines, but compute by means of distinct stages or in units of time. The paradigm of such models is, of course, Turing's original machine model. If we concentrate on this for a moment, the machine is considered to be running a program P perhaps on some natural number input n ∈ ℕ and is calculating P(n). Normally we say this is a successful computation if the machine halts after a finite number of stages and we may read off some designated form of output: ‘P(n)↓’ However if the machine fails to halt after a finite time it may be exhibiting a variety of behaviours on its tape. Mathematically we may ask what happens ‘in the limit’ as the number of stages approaches ω. The machine may of course go haywire, and simply be rewriting a particular cell infinitely often, or else the Read/Write head may go ‘off to infinity’ as it moves inexorably down the tape. These kind of considerations are behind the notion of ‘computation in the limit’ which we consider below.
Or, it may only rewrite finitely often to any cell on the tape, and leave something meaningful behind: an infinite string of 0, Is and thus an element of Cantor space 2ℕ. What kind of elements could be there?
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.