Published online by Cambridge University Press: 05 June 2014
Abstract. We trace the emergence of unsolvable problems in algebra and topology from the unsolvable halting problem for Turing machines.
§1. Introduction. Mathematicians have always been interested in being able to calculate with or about the things they study. For instance early developers of number theory and the calculus apparently did extensive calculations. By the early 1900s a number of problems were introduced asking for general algorithms to do certain calculations. In particular the tenth problem on Hilbert's influential list asked for an algorithm to determine whether an integer polynomial in several variables has an integer solution.
The introduction by Poincaré of the fundamental group as an invariant of a topological space which can often be finitely described by generators and relations led to Dehn's formulation of the word and isomorphism problem for groups. To make use of such group invariants we naturally want to calculate them and determine their properties. It turns out many of these problems do not have algorithmic solutions and we will trace the history and some of the ideas involved in showing these natural mathematical problems are unsolvable.
In the 1930s several definitions of computable functions emerged together with the formulation of the Church-Turing Thesis that these definitions captured intuitive notions of computability. Church and independently Turing showed that there is no algorithm to determine which formulas of first-order logic are valid, that is, the Entscheidungsproblem is unsolvable.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.