Published online by Cambridge University Press: 20 January 2010
This chapter presents homotopy classifications of two dimensional CW complexes and maps between them. Cases of these abstract classifications are detailed in Chapter III. Simplicial techniques are invoked in Section 1 to analyze maps of balls and spheres into 2-complexes. This analysis is applied in Section 2 to study the long exact sequence of homotopy groups for a 2-complex and to derive J. H. C. Whitehead's equivalence of the homotopy theory of 2-complexes with the purely algebraic theory of free crossed modules. Cellular chain complexes of universal coverings of 2-complexes are developed in Section 3. This equivariant world provides the foundation for the treatment in Section 4 of an abelianized version of Whitehead's equivalence, namely, the theory of algebraic 2-type of 2-complexes due to S. Mac Lane and Whitehead.
Techniques in Homotopy
In this section, we use simplicial approximations of maps between simplicial complexes to construct combinatorial approximations of maps between CW complexes, at least in dimensions one and two.
Simplicial Techniques
We view real m-space ℝm as a real vector space and we assume that the reader is familiar with the concepts of finite simplicial complexes K in ℝm and simplicial maps φ: K → M between such complexes. We don't distinguish notationally between a simplicial complex and the associated topological subspace of ℝm, and let context convey the object under consideration.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.