Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T12:05:30.177Z Has data issue: false hasContentIssue false

11 - Ceres’ Internal Evolution

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

The Dawn mission revealed that Ceres’ interior underwent partial differentiation and aqueous alteration, probably in its early history. The dwarf planet also preserved brines until present, at least on a regional scale. This chapter addresses the various processes involved in shaping Ceres’ interior based on the Dawn observations and knowledge gained from the analysis of carbonaceous chondrites and from observations of other icy worlds. The Dawn results highlight the importance of better understanding the extent of the feedback between geophysical and chemical evolution in ice-rich bodies. In particular, brines produced as a consequence of aqueous alteration can drive geological activity and the transfer of material from the deep interior to the surface. The four main evolution pathways proposed to explain Ceres’ current state are assessed against observational constraints. Most of these models offer explanations for the presence of deep brines below Ceres’ crust. However, uncertainties in the density of Ceres’ mantle and the extent of the brine reservoir prevent converging on the most likely evolutionary path. Altogether, the knowledge gained at Ceres can be applied to other icy worlds, and in particular to dwarf planets and icy moons with limited tidal heating.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 159 - 172
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D., Bowden, R., Fogel, M. L., & Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.Google Scholar
Allen, D. E., & Seyfried, W. E. Jr. (2004) Serpentinization and heat generation: Constraints from Lost City and Rainbow hydrothermal systems. Geochimica et Cosmochimica Acta, 68, 13471354.CrossRefGoogle Scholar
Anderson, J. D., Jacobson, R. A., McElrath, T. P., et al. (2001) Shape, mean radius, gravity field and interior structure of Callisto. Icarus, 153, 157161.Google Scholar
Benedix, G. K., Leshin, L. A., Jackson, T., & Thiemens, M. H. (2003) Carbonates in CM2 chondrites: Constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochimica et Cosmochimica Acta, 67, 15771588.Google Scholar
Bland, P. A., Collins, G. S., Davison, T. M., et al. (2014) Pressure-temperature evolution of primordial Solar System solids during impact-induced compaction. Nature Communications, 5, 54515451.Google Scholar
Bland, P. A., Howard, L. E., Prior, D. J., et al. (2011) Earliest rock fabric formed in the Solar System preserved in a chondrule rim. Nature Geoscience, 4, 244247.Google Scholar
Bland, P. A., Jackson, M. D., Coker, R. F., et al. (2009) Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability. Earth and Planetary Science Letters, 287, 559568.CrossRefGoogle Scholar
Bland, P. A., & Travis, B. J. (2017) Giant convecting mud balls of the early Solar System. Science Advances, 3, e1602514.CrossRefGoogle ScholarPubMed
Blum, J. (2004) Grain growth and coagulation. In Witt, A. N., Clayton, G. C., & Draine, B. T. (eds.), Astrophysics of Dust. San Francisco, CA: Astronomical Society of the Pacific, pp. 369391.Google Scholar
Blum, J., & Schrapler, R. (2004) Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Physical Review Letters, 93: 115503-1–115503-4.Google Scholar
Bowling, T. J., Ciesla, F. J., Davison, T. M., et al. (2019) Post-impact thermal structure and cooling timescales of Occator crater on Asteroid 1 Ceres. Icarus, 320.Google Scholar
Brearley, A. J. (2003) Nebular versus parent body processing. in Davis, A. M. (ed.), Treatise on Geochemistry, Vol. 1. Amsterdam: Elsevier, pp. 247268.Google Scholar
Brearley, A. J. (2006) The action of water. In Lauretta, D. S., & McSween, H. Y. Jr. (eds.), Meteorites and the Early Solar System II (pp. 587624). Tucson: University of Arizona Press.Google Scholar
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.s.CrossRefGoogle ScholarPubMed
Castillo-Rogez, J. C. (2011) Ceres – Neither a porous nor salty ball. Icarus, 215, 599602.Google Scholar
Castillo-Rogez, J. C., Hesse, M., Formisano, M., et al. (2019) Conditions for the long‐term preservation of a deep brine Rreservoir in Ceres. Geophysical Research Letters, 46, 19631972.CrossRefGoogle Scholar
Castillo-Rogez, J. C., & Lunine, J. I. (2010) Evolution of Titan’s rocky core constrained by Cassini observations. Geophysical Research Letters, 37, L20205.CrossRefGoogle Scholar
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.CrossRefGoogle Scholar
Castillo-Rogez, J. C., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’ evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Castillo-Rogez, J. C., & Schmidt, B. E. (2010) Geophysical evolution of the Themis family parent body. Geophysical Research Letters, 37, L10202.CrossRefGoogle Scholar
Castillo-Rogez, J. C., & Young, E. D. (2016) Origin and evolution of volatile-rich planetesimals. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimal Differentiation. Cambridge: Cambridge University Press, pp. 92114.Google Scholar
Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., et al. (2018) Organic matter in extraterrestrial water-bearing salt crystals. Science Advances, 4, eaao3521.CrossRefGoogle ScholarPubMed
Choblet, G., Tobie, G., Sotin, C., et al. (2017) Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy, 1, 841847.Google Scholar
Choukroun, M., Kieffer, S., Lu, X., & Tobie, G. (2013) Clathrate hydrates: Implication for exchange processes in the outer Solar System. In Gudipati, S. M., & Castillo-Rogez, J. C. (eds.), Science of Solar System Ices, 3rd ed. (Astrophysics and Space Science Library, 356, pp. 409454). New York: Springer.CrossRefGoogle Scholar
Clauser, C., & Huenges, E. (1995) Thermal conductivity of rocks and minerals. In Ahrens, T. J. (ed.), Rock Physics & Phase Relations. Washington, DC: American Geophysical Union.Google Scholar
Clayton, R. N., & Mayeda, T. K. (1999) Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.CrossRefGoogle Scholar
De Sanctis, M. C., Ammanito, E., Raponi, E., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Recent emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
Desch, S. J., Kalyaan, A., & Alexender, C. M. O’D. (2018) The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. The Astrophysical Journal Supplement Series, 238, 11.Google Scholar
Dullien, F. A. L. (1992) Porous Media, Fluid Transport and Pore Structure, 2nd ed. Cambridge, MA: Academic Press.Google Scholar
Durham, W. B., Prieto-Ballesteros, O., Goldsby, D. L., & Kargel, J. S. (2010) Rheological and thermal properties of icy materials. Space Science Reviews, 153, 273298.Google Scholar
Dyl, K. A., Manning, C. E., & Young, E. D. (2010) The implications of cronstedtite formation in water-rich planetesimals and asteroids. Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, April 2010, League City, TX. LPI Contrib. 1538, #5627.Google Scholar
El-Dessouky, H. T., & Ettouney, H. M. (2002) Fundamentals of Salt Water Desalination. Amsterdam: Elsevier Science B.V.Google Scholar
Ermakov, A. I., Fu, R. R., Castillo-Rogez, J. C., et al. (2017) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research: Planets, 122, 22672293.Google Scholar
Formisano, M., Federico, C., Castillo-Rogez, J., De Sanctis, M. C., & Magni, G. (2020) Thermal convection in the crust of the dwarf planet Ceres. Monthly Notices of the Royal Astronomical Society, 494, 57045712.CrossRefGoogle Scholar
Fu, R., Ermakov, E., Marchi, S., et al. (2017) Interior structure of the dwarf planet Ceres as revealed by surface topography. Earth and Planetary Science Letters, 476, 153164.Google Scholar
Fujiya, W., Sugiura, N., Marrocchi, Y., et al. (2015) Comprehensive study of carbon and oxygen isotopic compositions, trace element abundances, and cathodoluminescence intensities of calcite in the Murchison CM chondrite. Geochimica et Cosmochimica Acta, 70, 101117.Google Scholar
Gao, P., & Stevenson, D. J. (2013) Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus, 226, 11851191.CrossRefGoogle Scholar
Glein, C. R., Desch, S. J., & Shock, E. L. (2009) The absence of endogenic methane on Titan and its implications for the origin of atmospheric nitrogen. Icarus, 204, 637644.Google Scholar
Gounelle, M., & Zolensky, M. E. (2001) A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics & Planetary Science, 36, 13211329.Google Scholar
Guo, W., & Eiler, J. M. (2007) Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 55655575.CrossRefGoogle Scholar
Hendrix, A. R., Hurford, T. A., Barge, L. M., et al. (2019) The NASA roadmap to ocean worlds. Astrobiology, 19.CrossRefGoogle ScholarPubMed
Holm, N. G., Oze, C., Mousis, O., Waite, J. H., & Guilbert-Lepoutre, A. (2015) Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15, 587600.Google Scholar
Howard, K. T., Benedix, G. K., Bland, P. A., & Cressey, G. (2009) Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration. Geochimica et Cosmochimica Acta, 73, 45764589.Google Scholar
Hsieh, H. H. (2012) Main-belt comets as tracers of ice in the inner Solar System. Proceedings of the International Astronomical Union 8, Issue S293 (Formation, Detection, and Characterization of Extrasolar Habitable Planets), 212–218.Google Scholar
Hussmann, H., Sohl, F., & Spohn, T. (2006) Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objects. Icarus, 185, 258273.Google Scholar
Iess, L., Stevenson, D. J., Parisi, M., et al. (2014) The gravity field and interior structure of Enceladus. Science, 344, 7880.Google Scholar
Jogo, K., Nakamura, T., Ito, M., et al. (2017) Mn-Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: Constraints on the accretion ages of chondritic asteroids. Geochimica et Cosmochimica Acta, 199, 5874.CrossRefGoogle Scholar
Kamata, S., Nimmo, F., Sekine, Y., et al. (2019) Pluto’s ocean is capped and insulated by gas hydrates. Nature Geoscience, 12, 407410.Google Scholar
Keil, K. (2000) Thermal alteration of asteroids: Evidence from meteorites. Planetary and Space Science, 48, 887903.CrossRefGoogle Scholar
King, S. D., Castillo-Rogez, J. C., Toplis, M. J., et al. (2018) Ceres internal structure from geophysical constraints. Meteoritics & Planetary Science, 53, 19992007.Google Scholar
Kivelson, M. G., Khurana, K. K., & Volwerk, M. (2002) The permanent and inductive magnetic moments of Ganymede. Icarus, 157, 507522.Google Scholar
Kranck, K. (1973) Flocculation of suspended sediment in the sea. Nature, 246, 348350.Google Scholar
Le Guillou, C., Bernard, S., Brearley, A. J., & Remusat, L. (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et Cosmochimica Acta, 131, 368392.Google Scholar
Lee, M. R., Lindgren, P., & Sofe, M. R. (2014) Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration. Geochimica et Cosmochimica Acta, 144, 126156.Google Scholar
Leshin, L. A., Rubin, A. E., & McKeegan, K. D. (1997) The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochimica et Cosmochimica Acta, 61, 835845.CrossRefGoogle Scholar
Lodders, K., Palme, H., & Gail, H. P. (2009) Abundances of elements in the Solar System, in Trumper, J. E. (ed.), Landolt-Bornstein, New Series, Astronomy and Astrophysics. Berlin: Springer Verlag.Google Scholar
Macke, R. J., Consolmagno, G. J., & Britt, D. T. (2011) Density, porosity, and magnetic susceptibility of carbonaceous chondrites. Meteoritics & Planetary Science, 46, 18421862.Google Scholar
Maiorca, E., Uitenbroek, H., Uttenthaler, S., et al. (2014) A new solar fluorine abundance and a fluorine determination in the two open clusters M67 and NGC 6404. The Astrophysical Journal, 788, 149.Google Scholar
Mao, X., & McKinnon, W. B. (2018) Faster paleospin and deep-seated uncompensated mass as possible explanations for Ceres’ present-day shape and gravity. Icarus, 299, 430442.Google Scholar
Marchi, S., Ermakov, A. I., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
Marsset, M., Brož, M., Vernazza, P., et al. (2020) The violent collisional history of aqueously evolved (2) Pallas. Nature Astronomy, 4, 569576.Google Scholar
Marsset, M., Vernazza, P., Birlan, M., et al. (2016) Compositional characterization of the Themis family. Astronomy & Astrophysics, 586, id.A15.Google Scholar
Marzari, F., Davis, D., & Vanzani, V. (1995) Collisional evolution of asteroid families. Icarus, 113, 168187.Google Scholar
McCord, T. B., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research, 110, EO5009EO5014.Google Scholar
McKinnon, W. B., & Zolensky, M. E. (2003) Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, 3, 879897.CrossRefGoogle ScholarPubMed
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrite analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Mueller, S., & McKinnon, W. B. (1989) Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution. Icarus, 76, 437464.CrossRefGoogle Scholar
Néri, A., Guyot, F., Reynard, B., & Sotin, C. (2019) A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth and Planetary Science Letters, 530, id. 115920.Google Scholar
Neumann, W., Jaumann, R., Castillo-Rogez, J. C., Raymond, C. A., & Russell, C. T. (2020) Ceres’ partial differentiation: Undifferentiated crust mixing with a water-rich mantle. Astronomy and Astrophysics, 633, A117.Google Scholar
Neveu, M., & Desch, S. J. (2015) Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy mantle. Geophysical Research Letters, 42, 10,19710,206.CrossRefGoogle Scholar
Neveu, M., Desch, S.J., & Castillo-Rogez, J. C. (2015) Core cracking and hydrothermal circulation can profoundly affect Ceres’ geophysical evolution. Journal of Geophysical Research, 120, 123154.Google Scholar
Neveu, M., Desch, S. J., & Castillo-Rogez, J. C. (2017) Aqueous geochemistry in icy world interiors: Fate of antifreezes and radionuclides. Cosmochimica et Geochimica Acta, 212, 324371.CrossRefGoogle Scholar
Neveu, M., & Vernazza, P. (2019) IDP-like asteroids formed later than 5 Myr after Ca-Al-rich inclusions. The Astrophysical Journal, 875, id. 30.Google Scholar
Ormel, C. W., Cuzzi, J. N., & Tielens, A. G. G. M. (2008) Co-accretion of chondrules and dust in the solar nebula. The Astrophysical Journal, 679, 15881610.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M. C., et al. (2019) Compositional differences among Bright Spots on the Ceres surface. Icarus, 320, 202212.Google Scholar
Park, R. S., Konopliv, A. S., Ermakov, A. I., et al. (2020) Evidence of non-uniform crust of Ceres from Dawn’s high-resolution gravity data. Nature Astronomy, 4, 748755.Google Scholar
Postberg, F., Schmidt, J., Hillier, J., Kempf, S., & Srama, R. (2011) A salt-water reservoir as a source of compositionally stratified plume on Enceladus. Nature, 474, 620622.CrossRefGoogle ScholarPubMed
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2018) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Raponi, M. C., De Sanctis, F. G., Carrozzo, M., et al. (2019) Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.Google Scholar
Raymond, C. A., Castillo-Rogez, I., Ermakov, S., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Rivkin, A. S., & Emery, J. P. (2010) Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.Google Scholar
Rivkin, A. S., Howell, E. S., & Emery, J. P. (2019) Infrared spectroscopy of large, low-albedo asteroids: Are Ceres and Themis archetypes or outliers? Journal of Geophysical Research, 124, 13931409.Google Scholar
Roberts, J. H. (2015) The flully core of Enceladus. Icarus, 258, 5466.Google Scholar
Rubin, A. E., Zolensky, M. E., & Bodnar, R. J. (2002) The halite‐bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H‐chondrite parent body. Meteoritics & Planetary Science, 37, 125141.Google Scholar
Ruesch, O., Genova, A., Neumann, W., et al. (2019) Slurry extrusion on Ceres from a convective mud-bearing mantle. Nature Geoscience, 12, 505509.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, 353, aaf4286.CrossRefGoogle ScholarPubMed
Santibanez, P. A., Michaud, A. B., Vick-Majors, T. J., et al. (2019) Differential incorporation of bacteria, organic matter, and inorganic ions into lake ice during ice formation. Journal of Geophysical Research – Biogeosciences, 124, 585600.CrossRefGoogle Scholar
Sasso, M. R., Macke, R. J., Boesenberg, J. S., et al. (2009) Incompletely compacted equilibrated ordinary chondrites. Meteoritics & Planetary Science, 44, 17431753.Google Scholar
Schenk, P. M. (2002) Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes. Nature, 417, 419421.Google Scholar
Schrader, D. L., Franchi, I. A., Connolly, H. C. Jr., et al. (2011) The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochimica et Cosmochimica Acta, 75, 308325.Google Scholar
Scott, H. P., Williams, Q., & Ryerson, F. J. (2002) Experimental constraints on the chemical evolution of icy satellites. Earth and Planetary Science Letters, 203, 399412.CrossRefGoogle Scholar
Scully, J. E. C., Schenk, P. M., Buczkowski, D. L., et al. (2020) Formation of the bright faculae in Ceres’ Occator crater via long-lived brine effusion in a hydrothermal system. Nature Communications, 11, 3680.Google Scholar
Sheppard, S. S., & Trujillo, C. (2015) Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the Main Belt. Astronomy Journal, 149, id. 44.Google Scholar
Sirono, S.-I. (2013) Differentiation of silicates from H2O ice in an icy body induced by ripening. Earth, Planets and Space, 65, 15631568.CrossRefGoogle Scholar
Sizemore, H. G., Schmidt, B. E., Buczkowski, D. A., et al. (2019) A global inventory of ice‐related morphological features on dwarf planet Ceres: Implications for the evolution and current state of the cryosphere. Journal of Geophysical Research, 124, 16501689.Google Scholar
Sleep, N. H., Meibom, A., Fridriksson, Th., Coleman, R. G., & Bird, D. K. (2004) H2-rich fluids from serpentinization: Geochemical and biotic implications. Proceedings of the National Academy of Sciences (USA), 101, 1281812823.CrossRefGoogle ScholarPubMed
Stein, N. T., Ehlmann, B. L., Bland, M., Castillo-Rogez, J., & Stevenson, D. (2019) The formation and timing of near-surface Na-carbonate deposits on Ceres. Europlanet Science Congress, 13, EPSC-DPS2019–1194-1.Google Scholar
Stein, N. T., Ehlmann, B. L., Palomba, E., et al. (2017) The formation and evolution of bright spots on Ceres, Icarus, 320, 188201.CrossRefGoogle Scholar
Tosi, F., Carrozzo, F. G., Raponi, A., et al. (2018) Mineralogy and temperature of crater Haulani on Ceres. Meteoritics & Planetary Science, 53, 19021924.Google Scholar
Travis, B. J., Bland, P. A., Feldman, W. C., & Sykes, M. (2018) Hydrothermal dynamics in a CM-based model of Ceres. Meteoritics & Planetary Science, 53, 20082032.Google Scholar
Travis, B. J., & Schubert, G. (2015) Keeping Enceladus warm. Icarus, 250, 3242.Google Scholar
Vance, S. E., Harnmeijer, J., Kimura, J., et al. (2007) Hydrothermal systems in small ocean planets. Astrobiology, 7, 9871005.Google Scholar
Vance, S. E., & Melwani Daswani, M. (2020) Serpentinite and the search for life beyond Earth. Philosophical Transactions of the Royal Society A, 378, 20180421.Google Scholar
Vernazza, P., Brož, M., Drouard, A., et al. (2018) The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astronomy & Astrophysics, 618, id.A154.Google Scholar
Vernazza, P., Castillo-Rogez, J., Beck, P., et al. (2017) Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. The Astronomical Journal, 153, 72.Google Scholar
Vernazza, P., Jorda, L., Ševeček, P., et al. (2019) A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea. Nature Astronomy, 4, 136141.Google Scholar
Young, E. D., Ash, R. D., England, P. & Rumble, D. (1999) Fluid flow in chondritic parent bodies: Deciphering the composition of planetesimals. Science, 286, 13311335.Google Scholar
Young, E. D., Zhang, K. K., & Schubert, G. (2003) Conditions for water pore convection within carbonaceous chondrite parent bodies – Implications for planetesimal size and heat production. Earth and Planetary Science Letters, 213, 249259.Google Scholar
Zambon, F., Raponi, A., Tosi, F., et al. (2017) Spectral analysis of Ahuna Mons mission’s visible-infrared spectrometer. Geophysical Research Letters, 44, 97104.Google Scholar
Ziffer, J., Campins, H., Licandro, J., et al. (2011) Near-infrared spectroscopy of primitive asteroid families. Icarus, 213, 538546.Google Scholar
Zimmer, C., Khurana, K. K., & Kivelson, M. G. (2000) Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus, 147, 329347.Google Scholar
Zolensky, M. E., Bourcier, W. L., & Gooding, J. L. (1989) Aqueous alteration on the hydrous asteroids – Results of EQ3/6 computer simulations. Icarus, 78, 411425.Google Scholar
Zolotov, M. Y. (2014) Formation of brucite and cronstedtite-bearing mineral assemblages on Ceres. Icarus, 228, 1326.Google Scholar
Zolotov, M. Y. (2020) The composition and structure of Ceres’ interior. Icarus, 335, 113404.Google Scholar
Zolotov, M. Y., & Shock, E. L. (2001) Composition and stability of salts on the surface of Europa and their oceanic origin. Journal of Geophysical Research, 106, 3281532827.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×