Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T16:15:37.747Z Has data issue: false hasContentIssue false

12 - Geophysics of Vesta and Ceres

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Geophysical data from Dawn’s mission revealed complex and divergent internal structure evolutionary paths for Vesta and Ceres. Dawn’s data indicated that Vesta has a differentiated internal structure with uncompensated topography and Ceres is partially differentiated with compensated topography. Vesta experienced a magma ocean state, leading to effective early shape relaxation. Vesta’s current non-hydrostatic shape is dominated by Rheasilvia and Veneneia impact basins, formed when Vesta was too rigid to relax. However, northern terrains still reflect its pre-impact, closer-to-hydrostatic shape. Ceres incorporated abundant volatile material upon its accretion and subsequently underwent ice–rock fractionation. Observed surface aqueous alteration indicates extensive past hydrothermal circulation that facilitated efficient heat transfer and preserved Ceres’ interior in a relatively cool state. Lower viscosities at depth allowed isostatic compensation of Ceres’ long-wavelength topography. The high inferred abundance of water ice, hydrated salts, and/or clathrate phases suggest previous globally significant regions of solute-rich fluids that froze from the surface inward, leading to the vertical density gradient inferred from Dawn’s Second Extended Mission (XM2) high-resolution gravity data. This, coupled with thermal modeling, indicated that Ceres could have brine reservoirs, at least regionally, which were likely mobilized by the Occator crater-forming impact, leading to long-lived brine extrusion and faculae formation.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 173 - 196
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammannito, E., De Sanctis, M. C., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.Google Scholar
Bangerth, W., Hartmann, R., & Kanschat, G. (2007) Deal. II – a general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software (TOMS), 33, 24-es.Google Scholar
Barrat, J. A., Yamaguchi, A., Zanda, B., Bollinger, C., & Bohn, M. (2010) Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites. Geochimica et Cosmochimica Acta, 74, 62186231.Google Scholar
Beck, A. W., & McSween, H. Y. Jr (2010) Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.Google Scholar
Beuthe, M., Rivoldini, A., & Trinh, A. (2016) Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophysical Research Letters, 43, 10088.CrossRefGoogle Scholar
Bills, B. G., & Ermakov, A. I. (2019) Simple models of error spectra for planetary gravitational potentials as obtained from a variety of measurement configurations. Planetary and Space Science, 179, 104744.Google Scholar
Bills, B. G., & Scott, B. R. (2017) Secular obliquity variations of Ceres and Pallas. Icarus, 284, 5969.Google Scholar
Bills, B. G., Asmar, S. W., Konopliv, A. S., Park, R. S., & Raymond, C. A. (2014) Harmonic and statistical analyses of the gravity and topography of Vesta. Icarus, 240, 161173.CrossRefGoogle Scholar
Bland, M. T. (2013) Predicted crater morphologies on Ceres: Probing internal structure and evolution. Icarus, 226, 510521.Google Scholar
Bland, M. T., Ermakov, A. I., Raymond, C. A., et al. (2018) Morphological indicators of a mascon beneath Ceres’s largest crater, Kerwan. Geophysical Research Letters, 45, 12971304.Google Scholar
Bland, M. T., Raymond, C. A., Schenk, P. M., et al. (2016) Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geoscience, 9, 538542.CrossRefGoogle Scholar
Buczkowski, D. L., Wyrick, D. Y., Toplis, M., et al. (2014) The unique geomorphology and physical properties of the Vestalia Terra plateau. Icarus, 244, 89103.CrossRefGoogle Scholar
Čadek, O., Souček, O., & Běhounková, M. (2019) Is Airy isostasy applicable to icy moons? Geophysical Research Letters, 46, 1429914306.Google Scholar
Carry, B., Dumas, C., Fulchignoni, M., et al. (2008) Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astronomy & Astrophysics, 478, 235244.Google Scholar
Castillo-Rogez, J. C., Matson, D. L., Sotin, C., et al. (2007) Iapetus’ geophysics: Rotation rate, shape, and equatorial ridge. Icarus, 190, 179202.Google Scholar
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Castillo‐Rogez, J., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’s evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Chamberlain, M. A., Sykes, M. V., & Esquerdo, G. A. (2007) Ceres lightcurve analysis – Period determination. Icarus, 188, 451456.Google Scholar
Clenet, H., Jutzi, M., Barrat, J. A., et al. (2014) A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.CrossRefGoogle ScholarPubMed
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al. (2015) Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
Dermott, S. F. (1979) Shapes and gravitational moments of satellites and asteroids. Icarus, 37, 575586.Google Scholar
Dobrovolskis, A. R., & Burns, J. A. (1984) Angular momentum drain: A mechanism for despinning asteroids. Icarus, 57, 464476.Google Scholar
Dobson, D. P., Crichton, W. A., Vocadlo, L., et al. (2000) In situ measurement of viscosity of liquids in the Fe–FeS system at high pressures and temperatures. American Mineralogist, 85, 18381842.Google Scholar
Durante, D., Hemingway, D. J., Racioppa, P., Iess, L., & Stevenson, D. J. (2019) Titan’s gravity field and interior structure after Cassini. Icarus, 326, 123132.CrossRefGoogle Scholar
Ermakov, A. I. (2017) Geophysical Investigation of Vesta, Ceres and the Moon Using Gravity and Topography Data. Doctoral dissertation, Massachusetts Institute of Technology.Google Scholar
Ermakov, A. I., Fu, R. R., Castillo‐Rogez, J. C., et al. (2017a) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research: Planets, 122, 22672293.Google Scholar
Ermakov, A. I., Mazarico, E., Schröder, S. E., et al. (2017b) Ceres’s obliquity history and its implications for the permanently shadowed regions. Geophysical Research Letters, 44, 26522661.CrossRefGoogle Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. (2014) Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Formisano, M., Federico, C., Turrini, D., et al. (2013) The heating history of Vesta and the onset of differentiation. Meteoritics & Planetary Science, 48, 23162332.Google Scholar
Freed, A. M., Johnson, B. C., Blair, D. M., et al. (2014). The formation of lunar mascon basins from impact to contemporary form. Journal of Geophysical Research: Planets, 119, 23782397.Google Scholar
Fu, R. R., Ermakov, A. I., Marchi, S., et al. (2017) The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 476, 153164.CrossRefGoogle Scholar
Fu, R. R., Hager, B. H., Ermakov, A. I., & Zuber, M. T. (2014) Efficient early global relaxation of asteroid Vesta. Icarus, 240, 133145.CrossRefGoogle Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., et al. (2012) An ancient core dynamo in asteroid Vesta. Science, 338, 238241.Google Scholar
Gaskell, R. W. (2012) SPC shape and topography of Vesta from DAWN imaging data. AAS/Division for Planetary Sciences Meeting Abstracts, # 44 (Vol. 44), October, Reno, NV.Google Scholar
Ghosh, A., & McSween, H. Y. Jr (1998) A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187206.Google Scholar
Hemingway, D., Nimmo, F., Zebker, H., & Iess, L. (2013) A rigid and weathered ice shell on Titan. Nature, 500, 550552.Google Scholar
Hesse, M. A., & Castillo‐Rogez, J. C. (2019) Thermal evolution of the impact‐induced cryomagma chamber beneath Occator crater on Ceres. Geophysical Research Letters, 46, 12131221.Google Scholar
Hiesinger, H., Marchi, S., Schmedemann, N., et al. (2016) Cratering on Ceres: Implications for its crust and evolution. Science, 353, aaf4759.Google Scholar
Hirth, G., & Kohlstedt, D. L. (1996) Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93108.Google Scholar
Hughson, K. H., Russell, C. T., Schmidt, B. E., et al. (2019) Normal faults on Ceres: Insights into the mechanical properties and thermal history of Nar Sulcus. Geophysical Research Letters, 46, 8088.CrossRefGoogle Scholar
Ivanov, B. A., & Melosh, H. J. (2013) Two‐dimensional numerical modeling of the Rheasilvia impact formation. Journal of Geophysical Research: Planets, 118, 15451557.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Johnson, T. V., & McGetchin, T. R. (1973) Topography on satellite surfaces and the shape of asteroids. Icarus, 18, 612620.Google Scholar
Jutzi, M., & Asphaug, E. (2011) Mega‐ejecta on asteroid Vesta. Geophysical Research Letters, 38, 15.CrossRefGoogle Scholar
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J. A., & Benz, W. (2013) The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.CrossRefGoogle ScholarPubMed
Keane, J. T., & Ermakov, A. I. (2019) No evidence for true polar wander of Ceres. Nature Geoscience, 12, 972974.Google Scholar
King, S. D., Castillo‐Rogez, J. C., Toplis, M. J., et al. (2018) Ceres internal structure from geophysical constraints. Meteoritics & Planetary Science, 53, 19992007.Google Scholar
Konopliv, A. S., Asmar, S. W., Bills, B. G., et al. (2011a) The Dawn gravity investigation at Vesta and Ceres. Space Science Reviews, 163, 461486.Google Scholar
Konopliv, A. S., Asmar, S. W., Folkner, W. M., et al. (2011b) Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus, 211, 401428.Google Scholar
Konopliv, A. S., Asmar, S. W., Park, R. S., et al. (2014) The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.CrossRefGoogle Scholar
Konopliv, A. S., Park, R. S., & Ermakov, A. I. (2020) The Mercury gravity field, orientation, love number, and ephemeris from the MESSENGER radiometric tracking data. Icarus, 335, 113386.Google Scholar
Konopliv, A. S., Park, R. S., Vaughan, A. T., et al. (2018) The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus, 299, 411429.Google Scholar
Kovačević, A., & Kuzmanoski, M. (2007) A new determination of the mass of (1) Ceres. Earth, Moon, and Planets, 100, 117123.Google Scholar
Lebofsky, L. A. (1978) Asteroid 1 Ceres: Evidence for water of hydration. Monthly Notices of the Royal Astronomical Society, 182, 17P21P.Google Scholar
Lebofsky, L. A., Feierberg, M. A., Tokunaga, A. T., Larson, H. P., & Johnson, J. R. (1981) The 1.7-to 4.2-μm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals. Icarus, 48, 453459.Google Scholar
Li, S., & Milliken, R. E. (2015) Estimating the modal mineralogy of eucrite and diogenite meteorites using visible–near infrared reflectance spectroscopy. Meteoritics & Planetary Science, 50, 18211850.Google Scholar
Lichtenberg, T., Golabek, G. J., Gerya, T. V., & Meyer, M. R. (2016). The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus, 274, 350365.Google Scholar
Mandler, B. E., & Elkins‐Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Mao, X., & McKinnon, W. B. (2018a) Effect of impacts on Ceres’ spin evolution. Lunar and Planetary Science Conference (Vol. 49). The Woodlands, TX.Google Scholar
Mao, X., & McKinnon, W. B. (2018b) Faster paleospin and deep-seated uncompensated mass as possible explanations for Ceres’ present-day shape and gravity. Icarus, 299, 430442.Google Scholar
Marchi, S., Ermakov, A. I., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, 12257.CrossRefGoogle ScholarPubMed
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCord, T. B., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research: Planets, 110, 114.Google Scholar
McSweenJr, H. Y., Binzel, R. P., De Sanctis, M. C., et al. (2013) Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.Google Scholar
Melosh, H. J. (2011) Planetary Surface Processes. Cambridge: Cambridge University Press.Google Scholar
Melosh, H. J., Freed, A. M., Johnson, B. C., et al. (2013) The origin of lunar mascon basins. Science, 340, 15521555.Google Scholar
Milliken, R. E., & Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Moore, W. B., & Webb, A. A. G. (2013) Heat-pipe earth. Nature, 501, 501505.Google Scholar
Morbidelli, A., & Nesvorny, D. (2019) Kuiper belt: formation and evolution. In Prialnik, D., Barucci, M. A., & Young, L. (eds.), The Trans-Neptunian Solar System. Amsterdam: Elsevier, p. 25.Google Scholar
Muller, P. M., & Sjogren, W. L. (1968) Mascons: Lunar mass concentrations. Science, 161, 680684.Google Scholar
Nathues, A., Schmedemann, N., Thangjam, G., et al. (2020) Recent cryovolcanic activity at Occator crater on Ceres. Nature Astronomy, 4, 794801.Google Scholar
Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B., & Grundy, W. M. (2019) Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 3, 808812.Google Scholar
Neumann, G. A., Zuber, M. T., Smith, D. E., & Lemoine, F. G. (1996) The lunar crust: Global structure and signature of major basins. Journal of Geophysical Research: Planets, 101, 1684116863.Google Scholar
Neumann, G. A., Zuber, M. T., Wieczorek, M. A., et al. (2004) Crustal structure of Mars from gravity and topography. Journal of Geophysical Research: Planets, 109, 118.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Neumann, W., Jaumann, R., Castillo-Rogez, J., Raymond, C. A., & Russell, C. T. (2020) Ceres’ partial differentiation: Undifferentiated crust mixing with a water-rich mantle. Astronomy & Astrophysics, 633, A117.CrossRefGoogle Scholar
Neveu, M., & Desch, S. J. (2015) Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophysical Research Letters, 42, 10197.Google Scholar
O’Brien, D. P., & Sykes, M. V. (2011) The origin and evolution of the asteroid belt – Implications for Vesta and Ceres. Space Science Reviews, 163, 4161.Google Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., et al. (2014) Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.Google Scholar
Park, R. S., Konopliv, A. S., Bills, B. G., et al. (2016) A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature, 537, 515517.Google Scholar
Park, R. S., Konopliv, A. S., Ermakov, A. I., et al. (2020) Evidence of non-uniform crust of Ceres from Dawn’s high-resolution gravity data. Nature Astronomy, 4, 748755.Google Scholar
Park, R. S., Vaughan, A. T., Konopliv, A. S., et al. (2019) High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus, 319, 812827.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Preusker, F., Scholten, F., Matz, K. D., et al. (2016). Dawn at Ceres – Shape model and rotational state. Lunar and Planetary Science Conference, March, The Woodlands, TX, Vol. 47, Abstract 1954.Google Scholar
Quick, L. C., Buczkowski, D. L., Ruesch, O., et al. (2019) A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia Dome and Vinalia Faculae. Icarus, 320, 119135.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Raymond, C. A., Jaumann, R., Nathues, A., et al. (2011) The Dawn topography investigation. In Russell, C. T., & Raymond, C. A. (eds.), The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. New York: Springer, pp. 487510.Google Scholar
Raymond, C. A., Park, R. S., Asmar, S. W., et al. (2013) Vestalia Terra: An ancient mascon in the southern hemisphere of Vesta. Lunar and Planetary Science Conference, March, The Woodlands, TX, Vol. 44, Abstract 2882.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L. T., & Weiss, B. P. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 321339.Google Scholar
Righter, K., & Drake, M. J. (1997) A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Rivkin, A. S., Volquardsen, E. L., & Clark, B. E. (2006) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Ruesch, O., Genova, A., Neumann, W., et al. (2019) Slurry extrusion on Ceres from a convective mud-bearing mantle. Nature Geoscience, 12, 505509.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M. C., et al. (2014) Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research: Planets, 119, 20782108.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, 353, aaf4286.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1997) Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large‐scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Scott, E. R., Greenwood, R. C., Franchi, I. A., & Sanders, I. S. (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.CrossRefGoogle Scholar
Scully, J. E., Buczkowski, D. L., Schmedemann, N., et al. (2017) Evidence for the interior evolution of Ceres from geologic analysis of fractures. Geophysical Research Letters, 44, 95649572.Google Scholar
Scully, J. E., Yin, A., Russell, C. T., et al. (2014) Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta. Icarus, 244, 2340.Google Scholar
Sizemore, H. G., Schmidt, B. E., Buczkowski, D. A., et al. (2019) A global inventory of ice‐related morphological features on dwarf planet Ceres: Implications for the evolution and current state of the cryosphere. Journal of Geophysical Research: Planets, 124, 16501689.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., et al. (2012) Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.Google Scholar
Sterenborg, M. G., & Crowley, J. W. (2013) Thermal evolution of early Solar System planetesimals and the possibility of sustained dynamos. Physics of the Earth and Planetary Interiors, 214, 5373.Google Scholar
Thomas, P. C., Binzel, R. P., Gaffey, M. J., et al. (1997) Impact excavation on asteroid 4 Vesta: Hubble space telescope results. Science, 277, 14921495.Google Scholar
Thomas, P. C., Parker, J. W., McFadden, L. A., et al. (2005) Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Tkalcec, B. J., Golabek, G. J., & Brenker, F. E. (2013) Solid-state plastic deformation in the dynamic interior of a differentiated asteroid. Nature Geoscience, 6, 9397.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Travis, B. J., Bland, P. A., Feldman, W. C., & Sykes, M. V. (2018) Hydrothermal dynamics in a CM‐based model of Ceres. Meteoritics & Planetary Science, 53, 20082032.Google Scholar
Tricarico, P. (2013) Global gravity inversion of bodies with arbitrary shape. Geophysical Journal International, 195, 260275.Google Scholar
Tricarico, P. (2014) Multi-layer hydrostatic equilibrium of planets and synchronous moons: Theory and application to Ceres and to Solar System moons. The Astrophysical Journal, 782, 99.Google Scholar
Tricarico, P. (2018) True polar wander of Ceres due to heterogeneous crustal density. Nature Geoscience, 11, 819824.Google Scholar
Vaillant, T., Laskar, J., Rambaux, N., & Gastineau, M. (2019) Long-term orbital and rotational motions of Ceres and Vesta. Astronomy & Astrophysics, 622, A95.Google Scholar
Watts, A. B. (2001) Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press.Google Scholar
Wieczorek, M. A. (2015) Gravity and topography of the terrestrial planets. Treatise on Geophysics, 10, 165206.Google Scholar
Wilson, L., & Keil, K. (2012) Volcanic activity on differentiated asteroids: A review and analysis. Geochemistry, 72, 289321.Google Scholar
Zharkov, V. N., & Trubitsyn, V. P. (1978) Physics of Planetary Interiors. Astronomy and Astrophysics Series. Tucson, AZ: Pachart Pub House.Google Scholar
Zolotov, M. Y. (2009) On the composition and differentiation of Ceres. Icarus, 204, 183193.Google Scholar
Zolotov, M. Y. (2020) The composition and structure of Ceres’ interior. Icarus, 335, 113404.Google Scholar
Zuber, M. T., McSween, H. Y., Binzel, R. P., et al. (2011) Origin, internal structure and evolution of 4 Vesta. Space Science Reviews, 163, 7793.Google Scholar
Zuber, M. T., Smith, D. E., Neumann, G. A., et al. (2016) Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, 354, 438441.Google Scholar
Zuber, M. T., Smith, D. E., Watkins, M. M., et al. (2013) Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science, 339, 668671.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×