Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T16:50:15.808Z Has data issue: false hasContentIssue false

14 - Isotopic Constraints on the Formation of the Main Belt

from Part III - Implications for the Formation and Evolution of the Solar System

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Nucleosynthetic and radiogenic isotope data from meteorites have significantly advanced the understanding of how the protoplanetary disk was structured during the accretion of planetary precursors. Meteorites exhibit an isotopic dichotomy between carbonaceous (CC) and non-carbonaceous (NC) meteorites. This NC–CC dichotomy, combined with the chronology of meteorite parent body accretion, implies a potentially strict spatial divide between the inner (NC) and outer (CC) protoplanetary disk which lasted several million years. This divide may have been facilitated by early formation of the gas giant planets, which acted as a barrier, thereby significantly influencing the chemical evolution of the disk and thus the planet building process. These meteorite-derived findings and their implications for planet evolution are discussed here, with an emphasis on the role that Vesta and Ceres play in piecing together the history of the Solar System, as these bodies may be considered as samples of the inner and outer protoplanetary disk, respectively.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 212 - 226
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O. (2019a) Quantitative models for the elemental and isotopic fractionations in chondrites: The carbonaceous chondrites. Geochimica et Cosmochimica Acta, 254, 277309.Google Scholar
Alexander, C. M. O. (2019b) Quantitative models for the elemental and isotopic fractionations in the chondrites: The non-carbonaceous chondrites. Geochimica et Cosmochimica Acta, 254, 246276.Google Scholar
Alexander, C. M. O., Grossman, J. N., Ebel, D. S., & Ciesla, F. J. (2008) The formation conditions of chondrules and chondrites. Science, 320, 16171619.Google Scholar
Alexander, C. M. O., McKeegan, K. D., & Altwegg, K. (2018) Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214, 36.Google Scholar
Alibert, Y., Venturini, J., Helled, R., et al. (2018) The formation of Jupiter by hybrid pebble–planetesimal accretion. Nature Astronomy, 2, 873877.Google Scholar
Amelin, Y., Kaltenbach, A., Iizuka, T., et al. (2010) U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343350.CrossRefGoogle Scholar
Amelin, Y., & Krot, A. (2007) Pb isotopic age of the Allende chondrules. Meteoritics & Planetary Science, 42, 13211335.Google Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 1678.Google Scholar
Barrett, T. J., Barnes, J. J., Tartèse, R., et al. (2016) The abundance and isotopic composition of water in eucrites. Meteoritics & Planetary Science, 51, 11101124.CrossRefGoogle Scholar
Benedix, G. K., McCoy, T. J., Keil, K., & Love, S. G. (2000) A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-winonaite parent body. Meteoritics & Planetary Science, 35, 11271141.Google Scholar
Bermingham, K. R., Füri, E., Lodders, K., & Marty, B. (2020) The NC–CC isotope dichotomy: Implications for the chemical and isotopic evolution of the early Solar System. Space Science Reviews, 216, 133.CrossRefGoogle Scholar
Bermingham, K. R., Gussone, N., Mezger, K., & Krause, J. (2018a) Origins of mass-dependent and mass-independent Ca isotope variations in meteoritic components and meteorites. Geochimica et Cosmochimica Acta, 226, 206223.Google Scholar
Bermingham, K. R., Mezger, K., Scherer, E. E., et al. (2016) Barium isotope abundances in meteorites and their implications for early Solar System evolution. Geochimica et Cosmochimica Acta, 175, 282298.Google Scholar
Bermingham, K. R., Worsham, E. A., & Walker, R. J. (2018b) New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics. Earth and Planetary Science Letters, 487, 221229.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186.Google Scholar
Birnstiel, T., Dullemond, C. P., & Pinilla, P. (2013) Lopsided dust rings in transition disks. Astronomy & Astrophysics, 550, L8.Google Scholar
Bizzarro, M., Baker, J. A., Haack, H., & Lundgaard, K. L. (2005) Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophysics Journal, 632, L41L44.CrossRefGoogle Scholar
Blackburn, T., Alexander, C. M. O., Carlson, R., & Elkins-Tanton, L. T. (2017) The accretion and impact history of the ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta, 200, 201217.CrossRefGoogle Scholar
Blum, J., & Wurm, G. (2000) Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus, 143, 138146.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.CrossRefGoogle ScholarPubMed
Bollard, J., Kawasaki, N., Sakamoto, N., et al. (2019) Combined U-corrected Pb–Pb dating and 26Al–26Mg systematics of individual chondrules – Evidence for a reduced initial abundance of 26Al amongst inner Solar System chondrules. Geochimica et Cosmochimica Acta, 260, 6283.Google Scholar
Brasser, R., & Mojzsis, S. J. (2020) The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nature Astronomy, 4, 492499.CrossRefGoogle Scholar
Brennecka, G. A., Borg, L. E., & Wadhwa, M. (2013) Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis. Proceedings of the National Academy of Sciences (USA), 110, 17241.Google Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010) 238U/235U Variations in meteorites: Extant 247Cm and implications for Pb–Pb dating. Science, 327, 449451.Google Scholar
Buchwald, V. F. (1975) Handbook of Iron Meteorites: Their History, Distribution, Composition, and Structure, in 3 volumes. Berkeley: University of California Press.Google Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016) Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293303.Google Scholar
Budde, G., Burkhardt, C., & Kleine, T. (2019) Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, 3, 736741.CrossRefGoogle Scholar
Budde, G., Kruijer, T. S., & Kleine, T. (2018) Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 284304.Google Scholar
Burbine, T. H. (1998) Could G-class asteroids be the parent bodies of the CM chondrites? Meteoritics & Planetary Science, 33, 253258.Google Scholar
Burkhardt, C., Dauphas, N., Hans, U., Bourdon, B., & Kleine, T. (2019) Elemental and isotopic variability in Solar System materials by mixing and processing of primordial disk reservoirs. Geochimica et Cosmochimica Acta, 261, 145170.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Dauphas, N., & Wieler, R. (2012) Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust. Earth and Planetary Science Letters, 357–358, 298307.Google Scholar
Burkhardt, C., Kleine, T., Oberli, F., et al. (2011) Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth and Planetary Science Letters, 312, 390400.Google Scholar
Cameron, A. G. W., & Truran, J. W. (1977) The supernova trigger for formation of the Solar System. Icarus, 30, 447461.CrossRefGoogle Scholar
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.Google Scholar
Clayton, D. D. (1982) Cosmic chemical memory: a new astronomy. Quarterly Journal of the Royal Astronomical Society, 23, 174212.Google Scholar
Clayton, R. N. (1993) Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences, 21, 115149.Google Scholar
Connelly, J. N., Amelin, Y., Krot, A. N., & Bizzarro, M. (2008) Chronology of the Solar System’s oldest solids. Astrophysics Journal, 675, L121L124.CrossRefGoogle Scholar
Connelly, J. N., & Bizzarro, M. (2009) Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chemical Geology, 259, 143151.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Crida, A., Morbidelli, A., & Masset, F. (2006) On the width and shape of gaps in protoplanetary disks. Icarus, 181, 587604.Google Scholar
Dauphas, N., & Chaussidon, M. (2011) A perspective from extinct radionuclides on a young stellar object: The sun and its accretion disk. Annual Review of Earth and Planetary Sciences, 39, 351386.CrossRefGoogle Scholar
Dauphas, N., Marty, B., & Reisberg, L. (2002) Molybdenum nucleosynthetic dichotomy revealed in primitive meteorites. Astrophysics Journal, 569, L139L142.Google Scholar
Dauphas, N., & Schauble, E. A. (2016) Mass fractionation laws, mass-independent effects, and isotopic anomalies. Annual Review of Earth and Planetary Sciences, 44, 709783.Google Scholar
Davis, A. M., Zhang, J., Greber, N. D., et al. (2018) Titanium isotopes and rare earth patterns in CAIs: Evidence for thermal processing and gas-dust decoupling in the protoplanetary disk. Geochimica et Cosmochimica Acta, 221, 275295.Google Scholar
Day, J. M. D., & Moynier, F. (2014) Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130259.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
Delbo, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. (2017) Identification of a primordial asteroid family constrains the original planetesimal population. Science, 357, 1026.Google Scholar
DeMeo, F. E., & Carry, B. (2014) Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.Google Scholar
Dermott, S. F., Christou, A. A., Li, D., Kehoe Thomas, J. J., & Robinson, J. M. (2018) The common origin of family and non-family asteroids. Nature Astronomy, 2, 549554.Google Scholar
Desch, S. J., Kalyaan, A., & Alexander, C. M. O. (2018) The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophysics Journal Supplementary Series, 238, 11.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.Google Scholar
Dwarkadas, V. V., Dauphas, N., Meyer, B., Boyajian, P., & Bojazi, M. (2017) Triggered star formation inside the shell of a Wolf–Rayet bubble as the origin of the Solar System. Astrophysics Journal, 851, 147.Google Scholar
Elkins-Tanton, L. T. (2012) Magma oceans in the inner Solar System. Annual Review of Earth and Planetary Sciences, 40, 113139.Google Scholar
Fischer-Gödde, M., Burkhardt, C., Kruijer, T. S., & Kleine, T. (2015) Ru isotope heterogeneity in the solar protoplanetary disk. Geochimica et Cosmochimica Acta, 168, 151171.Google Scholar
Formisano, M., Federico, C., Turrini, D., et al. (2013) The heating history of Vesta and the onset of differentiation. Meteoritics & Planetary Science, 48, 23162332.Google Scholar
Goldstein, J. I., Scott, E. R. D., & Chabot, N. L. (2009) Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Geochemistry, 69, 293325.Google Scholar
Gradie, J., & Tedesco, E. (1982) Compositional structure of the asteroid belt. Science, 216, 14051407.CrossRefGoogle ScholarPubMed
Greenwood, R. C., Burbine, T. H., & Franchi, I. A. (2020) Linking asteroids and meteorites to the primordial planetesimal population. Geochimica et Cosmochimica Acta, 277, 377406.Google Scholar
Heck, P. R., Greer, J., Kööp, L., et al. (2020) Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide. Proceedings of the National Academy of Sciences (USA), 117, 1884.CrossRefGoogle ScholarPubMed
Hellmann, J. L., Kruijer, T. S., Orman, J. A. V., Metzler, K., & Kleine, T. (2019) Hf–W chronology of ordinary chondrites. Geochimica et Cosmochimica Acta, 258, 290309.CrossRefGoogle Scholar
Henke, S., Gail, H.-P., Trieloff, M., Schwarz, W. H., & Kleine, T. (2012) Thermal history modelling of the H chondrite parent body. Astronomy & Astrophysics, 545, A135.Google Scholar
Hevey, P. J., & Sanders, I. S. (2006) A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.Google Scholar
Hilton, C. D., Bermingham, K. R., Walker, R. J., & McCoy, T. J. (2019) Genetics, crystallization sequence, and age of the South Byron Trio iron meteorites: New insights to carbonaceous chondrite (CC) type parent bodies. Geochimica et Cosmochimica Acta, 251, 217228.CrossRefGoogle ScholarPubMed
Hogerheijde, M. R. (2011) Protoplanetary disk. In Gargaud, M., Amils, R., Quintanilla, J. C., et al. (eds.), Encyclopedia of Astrobiology. Berlin: Springer, pp. 13571366.Google Scholar
Humayun, M., & Clayton, R. N. (1995) Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochimica et Cosmochimica Acta, 59, 21312148.Google Scholar
Huss, G. R., & McSween, J. H Y. (eds.) (2010) Presolar grains: A record of stellar nucleosynthesis and processes in interstellar space. In Cosmochemistry Cambridge: Cambridge University Press, pp. 120156.Google Scholar
International Union of Pure and Applied Chemistry (2006) IUPAC Compendium of Chemical Terminology: The Gold Book. Research Triangle Park, NC: International Union of Pure and Applied Chemistry.Google Scholar
Ireland, T. R., Avila, J., Greenwood, R. C., Hicks, L. J., & Bridges, J. C. (2020) Oxygen isotopes and sampling of the Solar System. Space Science Reviews, 216, 25.Google Scholar
Jacquet, E., Pignatale, F. C., Chaussidon, M., & Charnoz, S. (2019) Fingerprints of the protosolar cloud collapse in the Solar System. II. Nucleosynthetic anomalies in meteorites. Astrophysics Journal, 884, 32.Google Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687.CrossRefGoogle ScholarPubMed
Jogo, K., Nakamura, T., Ito, M., et al. (2017) Mn–Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: Constraints on the accretion ages of chondritic asteroids. Geochimica et Cosmochimica Acta, 199, 5874.Google Scholar
Kita, N. T., & Ushikubo, T. (2012) Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules: Disk evolution and 26Al chronology of chondrules. Meteoritics & Planetary Science, 47, 11081119.Google Scholar
Kleine, T., Budde, G., Burkhardt, C., et al. (2020) The non-carbonaceous–carbonaceous meteorite dichotomy. Space Science Reviews, 216, 55.CrossRefGoogle Scholar
Kleine, T., Hans, U., Irving, A. J., & Bourdon, B. (2012) Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009) Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.CrossRefGoogle Scholar
Kleine, T., & Wadhwa, M. (2017) Chronology of planetesimal differentiation. In Elkins-Tanton, L. T., & Weiss, B. P. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 224245.Google Scholar
Kleine, T., & Walker, R. J. (2017) Tungsten isotopes in planets. Annual Review of Earth and Planetary Sciences, 45, 389417.Google Scholar
Konopliv, A. S., Park, R. S., Vaughan, A. T., et al. (2018) The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus, 299, 411429.Google Scholar
Krot, A. N., Amelin, Y., Bland, P., et al. (2009) Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta, 73, 49634997.Google Scholar
Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A., & Weisberg, M. K. (2014) Classification of meteorites and their genetic relationships. In Holland, H. D., & Turekian, K. K. (eds.), Treatise on Geochemistry. Amsterdam: Elsevier, pp. 163.Google Scholar
Krot, A. N., Makide, K., Nagashima, K., et al. (2012) Heterogeneous distribution of 26Al at the birth of the Solar System: Evidence from refractory grains and inclusions: 26Al heterogeneity in the early Solar System. Meteoritics & Planetary Science, 47, 19481979.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Libourel, G., & Miller, K. E. (2018) Multiple mechanisms of transient heating events in the protoplanetary disk: Evidence from precursors of chondrules and igneous Ca, Al-rich inclusions. In Krot, A. N., Connolly, H. C. Jr., & Russell, S. S. (eds.), Chondrules: Records of Protoplanetary Disk Processes. Cambridge: Cambridge University Press, pp. 1156.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., & Kleine, T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences (USA), 114, 67126716.Google Scholar
Kruijer, T. S., & Kleine, T. (2019) Age and origin of IIE iron meteorites inferred from Hf-W chronology. Geochimica et Cosmochima Acta, 262, 92103.Google Scholar
Kruijer, T. S., Kleine, T., & Borg, L. E. (2020) The great isotopic dichotomy of the early Solar System. Nature Astronomy, 4, 3240.CrossRefGoogle Scholar
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. (2014) Protracted core formation and rapid accretion of protoplanets. Science, 344, 1150.CrossRefGoogle ScholarPubMed
Lambrechts, M., & Johansen, A. (2012) Rapid growth of gas-giant cores by pebble accretion. Astronomy & Astrophysics, 544, A32.Google Scholar
Lee, T., Papanastassiou, D. A., & Wasserburg, G. J. (1977) Aluminum-26 in the early Solar System: Fossil or fuel? Astrophysics Journal, 211, L107L110.Google Scholar
Lewis, R. S., Ming, T., Wacker, J. F., Anders, E., & Steel, E. (1987) Interstellar diamonds in meteorites. Nature, 326, 160162.CrossRefGoogle Scholar
Leya, I., Schönbächler, M., Wiechert, U., Krähenbühl, U., & Halliday, A. N. (2008) Titanium isotopes and the radial heterogeneity of the Solar System. Earth and Planetary Science Letters, 266, 233244.Google Scholar
Lodders, K. (2003) Solar System abundances and condensation temperatures of the elements. Astrophysics Journal, 591, 12201247.Google Scholar
Lodders, K., & Amari, S. (2005) Presolar grains from meteorites: Remnants from the early times of the Solar System. Chemie der Erde – Geochemistry, 65, 93166.Google Scholar
Lovering, J. F. (1957) Differentiation in the iron-nickel core of a parent meteorite body. Geochimica et Cosmochimica Acta, 12, 238252.Google Scholar
Lunning, N. G., Corrigan, C. M., McSween, H. Y., et al. (2016) CV and CM chondrite impact melts. Geochimica et Cosmochimica Acta, 189, 338358.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
Mayer, B., Wittig, N., Humayun, M., & Leya, I. (2015) Palladium isotopic evidence for nucleosynthetic and cosmogenic isotope anomalies in IVB iron meteorites. Astrophysics Journal, 809, 180.Google Scholar
McCord, T. B., Li, J.-Y., Combe, J.-P., et al. (2012) Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 491, 8386.Google Scholar
Morbidelli, A., Bitsch, B., Crida, A., et al. (2016) Fossilized condensation lines in the Solar System protoplanetary disk. Icarus, 267, 368376.Google Scholar
Nagashima, K., Krot, A. N., & Komatsu, M. (2017) 26Al–26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 303319.Google Scholar
Nanne, J. A. M., Nimmo, F., Cuzzi, J. N., & Kleine, T. (2019) Origin of the non-carbonaceous–carbonaceous meteorite dichotomy. Earth and Planetary Science Letters, 511, 4454.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Niemeyer, S. (1988) Titanium isotopic anomalies in chondrules from carbonaceous chondrites. Geochimica et Cosmochimica Acta, 52, 309318.Google Scholar
Ott, U. (2014) Planetary and pre-solar noble gases in meteorites. Geochemistry, 74, 519544.Google Scholar
Papanastassiou, D. A. (1986) Chromium isotopic anomalies in the Allende meteorite Astrophysics Journal, 308, L27L30.CrossRefGoogle Scholar
Pape, J., Mezger, K., Bouvier, A.-S., & Baumgartner, L. P. (2019) Time and duration of chondrule formation: Constraints from 26Al–26Mg ages of individual chondrules. Geochimica et Cosmochimica Acta, 244, 416436.Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124, 6285.Google Scholar
Poole, G. M., Rehkämper, M., Coles, B. J., Goldberg, T., & Smith, C. L. (2017) Nucleosynthetic molybdenum isotope anomalies in iron meteorites – new evidence for thermal processing of solar nebula material. Earth and Planetary Science Letters, 473, 215226.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 55.Google Scholar
Qin, L., & Carlson, R. W. (2016) Nucleosynthetic isotope anomalies and their cosmochemical significance. Geochemical Journal, 50, 4365.Google Scholar
Raymond, S. N., & Izidoro, A. (2017a) The empty primordial asteroid belt. Science Advances, 3, e1701138.Google Scholar
Raymond, S. N., & Izidoro, A. (2017b) Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134148.CrossRefGoogle Scholar
Reddy, V., Corre, L. L., O’Brien, D. P., et al. (2012) Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Regelous, M., Elliott, T., & Coath, C. D. (2008) Nickel isotope heterogeneity in the early Solar System. Earth and Planetary Science Letters, 272, 330338.Google Scholar
Righter, K. (2007) Not so rare Earth? New developments in understanding the origin of the Earth and Moon. Geochemistry, 67, 179200.CrossRefGoogle Scholar
Rotaru, M., Birck, J. L., & Allègre, C. J. (1992) Clues to early Solar System history from chromium isotopes in carbonaceous chondrites. Nature, 358, 465470.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 1008.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684.CrossRefGoogle ScholarPubMed
Sarafian, A. R., Hauri, E. H., McCubbin, F. M., et al. (2017a) Early accretion of water and volatile elements to the inner Solar System: Evidence from angrites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20160209.Google Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., et al. (2017b) Angrite meteorites record the onset and flux of water to the inner Solar System. Geochimica et Cosmochimica Acta, 212, 156166.CrossRefGoogle Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., et al. (2019) The water and fluorine content of 4 Vesta. Geochimica et Cosmochimica Acta, 266, 568581.CrossRefGoogle Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., McCubbin, F. M., & Monteleone, B. D. (2014) Early accretion of water in the inner Solar System from a carbonaceous chondrite-like source. Science, 346, 623626.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694.Google Scholar
Schiller, M., Bizzarro, M., & Fernandes, V. A. (2018) Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature, 555, 507510.Google Scholar
Schiller, M., Paton, C., & Bizzarro, M. (2015) Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events. Geochimica et Cosmochimica Acta, 149, 88102.CrossRefGoogle ScholarPubMed
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017) Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochimica et Cosmochimica Acta, 201, 275302.Google Scholar
Scott, E. R. D. (1972) Chemical fractionation in iron meteorites and its interpretation. Geochimica et Cosmochimica Acta, 36, 12051236.Google Scholar
Scott, E. R. D. (1977) Formation of olivine-metal textures in pallasite meteorites. Geochimica et Cosmochimica Acta, 41, 693710.Google Scholar
Scott, E. R. D., Krot, A. N., & Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. Astrophysics Journal, 854, 164.Google Scholar
Scott, E. R. D., & Wasson, J. T. (1976) Chemical classification of iron meteorites – VIII. Groups IC. IIE, IIIF and 97 other irons. Geochimica et Cosmochimica Acta, 40, 103115.Google Scholar
Shu, F. H., Adams, F. C., & Lizano, S. (1987) Star formation in molecular clouds: Observation and theory. Annual Review of Astronomy & Astrophysics, 25, 2381.Google Scholar
Spitzer, F., Burkhardt, C., Budde, G., et al. (2020) Isotopic evolution of the inner Solar System inferred from molybdenum isotopes in meteorites. Astrophysics Journal, 898, L2.CrossRefGoogle Scholar
Spitzer, F., Burkhardt, C., Pape, J., & Kleine, T. (in press) Collisional mixing between inner and outer solar system planetesimals inferred from the Nedagolla iron meteorite. Meteoritics & Planetary Science.Google Scholar
Sugiura, N., & Fujiya, W. (2014) Correlated accretion ages and ε 54 Cr of meteorite parent bodies and the evolution of the solar nebula. Meteoritics & Planetary Science, 49, 772787.Google Scholar
Tang, H., & Dauphas, N. (2012) Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth and Planetary Science Letters, 359–360, 248263.Google Scholar
Taylor, G. J., Keil, K., McCoy, T., Haack, H., & Scott, E. R. D. (1993) Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics, 28, 3452.Google Scholar
Tornabene, H. A., Hilton, C. D., Bermingham, K. R., Ash, R. D., & Walker, R. J. (2020) Genetics, age and crystallization history of group IIC iron meteorites. Geochimica et Cosmochimica Acta, 288, 3650.Google Scholar
Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B., & Kleine, T. (2015) Hf–W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.Google Scholar
Trinquier, A., Birck, J., & Allegre, C. J. (2007) Widespread 54Cr heterogeneity in the inner Solar System. Astrophysics Journal, 655, 11791185.Google Scholar
Trinquier, A., Birck, J.-L., Allègre, C. J., Göpel, C., & Ulfbeck, D. (2008) 53Mn–53Cr systematics of the early Solar System revisited. Geochimica et Cosmochimica Acta, 72, 51465163.CrossRefGoogle Scholar
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009) Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374376.Google Scholar
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016) Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proceedings of the National Academy of Sciences (USA), 113, 20112016.Google Scholar
Vernazza, P., & Beck, P. (2017) Composition of Solar System small bodies. In Weiss, B. P., & Elkins-Tanton, L. T. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 269297.Google Scholar
Villeneuve, J., Chaussidon, M., & Libourel, G. (2009) Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science, 325, 985988.Google Scholar
Vockenhuber, C., Oberli, F., Bichler, M., et al. (2004) New half-life measurement of 182Hf: Improved chronometer for the early Solar System. Physical Review Letters, 93, 172501.Google Scholar
Walker, R. J., Bermingham, K., Liu, J., et al. (2015) In search of late-stage planetary building blocks. Chemical Geology, 411, 125142.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Walte, N. P., Solferino, G. F. D., Golabek, G. J., Souza, D. S., & Bouvier, A. (2020) Two-stage formation of pallasites and the evolution of their parent bodies revealed by deformation experiments. Earth and Planetary Science Letters, 546, 116419.CrossRefGoogle Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.Google Scholar
Wasson, J. T., & Kallemeyn, G. W. (2002) The IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta, 66, 24452473.CrossRefGoogle Scholar
Weber, P., Benítez-Llambay, P., Gressel, O., Krapp, L., & Pessah, M. E. (2018) Characterizing the variable dust permeability of planet-induced gaps. Astrophysics Journal, 854, 153.CrossRefGoogle Scholar
Weidenschilling, S. J. (1977) Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society, 180, 5770.Google Scholar
Worsham, E. A., Bermingham, K. R., & Walker, R. J. (2017) Characterizing cosmochemical materials with genetic affinities to the Earth: Genetic and chronological diversity within the IAB iron meteorite complex. Earth and Planetary Science Letters, 467, 157166.Google Scholar
Worsham, E. A., Bermingham, K. R., & Walker, R. J. (2016) Siderophile element systematics of IAB complex iron meteorites: New insights into the formation of an enigmatic group. Geochimica et Cosmochimica Acta, 188, 261283.Google Scholar
Worsham, E. A., Burkhardt, C., Budde, G., et al. (2019) Distinct evolution of the carbonaceous and non-carbonaceous reservoirs: Insights from Ru, Mo, and W isotopes. Earth and Planetary Science Letters, 521, 103112.Google Scholar
Yang, J., Goldstein, J. I., & Scott, E. R. D. (2007) Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar
Yang, J., Goldstein, J. I., & Scott, E. R. D. (2010) Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.Google Scholar
Yang, L., & Ciesla, F. J. (2012) The effects of disk building on the distributions of refractory materials in the solar nebula. Meteoritics & Planetary Science, 47, 99119.Google Scholar
Yokoyama, T., Nagai, Y., Fukai, R., & Hirata, T. (2019) Origin and evolution of distinct molybdenum isotopic variabilities within carbonaceous and noncarbonaceous reservoirs. Astrophysics Journal, 883, 62.Google Scholar
Young, E. D. (2014) Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the Solar System. Earth and Planetary Science Letters, 392, 1627.Google Scholar
Zinner, E. (2014) Presolar grains. In Davis, A. M. (ed.), Treatise on Geochemistry. Amsterdam: Elsevier, pp. 181213.Google Scholar
Zinner, E., Ming, T., & Anders, E. (1987) Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite. Nature, 330, 730732.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×